ECAM: A Contrastive Learning Approach to Avoid Environmental Collision in Trajectory Forecasting
- URL: http://arxiv.org/abs/2506.09626v1
- Date: Wed, 11 Jun 2025 11:35:36 GMT
- Title: ECAM: A Contrastive Learning Approach to Avoid Environmental Collision in Trajectory Forecasting
- Authors: Giacomo Rosin, Muhammad Rameez Ur Rahman, Sebastiano Vascon,
- Abstract summary: This paper introduces ECAM, a contrastive learning-based module to enhance collision avoidance ability with the environment.<n>The proposed module can be integrated into existing trajectory forecasting models, improving their ability to generate collision-free predictions.<n>Our experiments show that state-of-the-art methods significantly reduce (-40/50%) the collision rate when integrated with the proposed module.
- Score: 2.0195517740356808
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human trajectory forecasting is crucial in applications such as autonomous driving, robotics and surveillance. Accurate forecasting requires models to consider various factors, including social interactions, multi-modal predictions, pedestrian intention and environmental context. While existing methods account for these factors, they often overlook the impact of the environment, which leads to collisions with obstacles. This paper introduces ECAM (Environmental Collision Avoidance Module), a contrastive learning-based module to enhance collision avoidance ability with the environment. The proposed module can be integrated into existing trajectory forecasting models, improving their ability to generate collision-free predictions. We evaluate our method on the ETH/UCY dataset and quantitatively and qualitatively demonstrate its collision avoidance capabilities. Our experiments show that state-of-the-art methods significantly reduce (-40/50%) the collision rate when integrated with the proposed module. The code is available at https://github.com/CVML-CFU/ECAM.
Related papers
- STRIDE: Street View-based Environmental Feature Detection and Pedestrian
Collision Prediction [1.002773173311891]
We introduce a built environment detection task in large-scale panoramic images and a detection-based pedestrian collision frequency prediction task.
Our experiments demonstrate a significant correlation between object detection of built environment elements and pedestrian collision frequency prediction.
arXiv Detail & Related papers (2023-08-25T05:25:01Z) - Learning Terrain-Aware Kinodynamic Model for Autonomous Off-Road Rally
Driving With Model Predictive Path Integral Control [4.23755398158039]
We propose a method for learning terrain-aware kinodynamic model conditioned on both proprioceptive and exteroceptive information.
The proposed model generates reliable predictions of 6-degree-of-freedom motion and can even estimate contact interactions.
We demonstrate the effectiveness of our approach through experiments on a simulated off-road track, showing that our proposed model-controller pair outperforms the baseline.
arXiv Detail & Related papers (2023-05-01T06:09:49Z) - Benchmark for Models Predicting Human Behavior in Gap Acceptance
Scenarios [4.801975818473341]
We develop a framework facilitating the evaluation of any model, by any metric, and in any scenario.
We then apply this framework to state-of-the-art prediction models, which all show themselves to be unreliable in the most safety-critical situations.
arXiv Detail & Related papers (2022-11-10T09:59:38Z) - COPILOT: Human-Environment Collision Prediction and Localization from
Egocentric Videos [62.34712951567793]
The ability to forecast human-environment collisions from egocentric observations is vital to enable collision avoidance in applications such as VR, AR, and wearable assistive robotics.
We introduce the challenging problem of predicting collisions in diverse environments from multi-view egocentric videos captured from body-mounted cameras.
We propose a transformer-based model called COPILOT to perform collision prediction and localization simultaneously.
arXiv Detail & Related papers (2022-10-04T17:49:23Z) - Switchable Representation Learning Framework with Self-compatibility [50.48336074436792]
We propose a Switchable representation learning Framework with Self-Compatibility (SFSC)
SFSC generates a series of compatible sub-models with different capacities through one training process.
SFSC achieves state-of-the-art performance on the evaluated datasets.
arXiv Detail & Related papers (2022-06-16T16:46:32Z) - Domain Knowledge Driven Pseudo Labels for Interpretable Goal-Conditioned
Interactive Trajectory Prediction [29.701029725302586]
We study the joint trajectory prediction problem with the goal-conditioned framework.
We introduce a conditional-variational-autoencoder-based (CVAE) model to explicitly encode different interaction modes into the latent space.
We propose a novel approach to avoid KL vanishing and induce an interpretable interactive latent space with pseudo labels.
arXiv Detail & Related papers (2022-03-28T21:41:21Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
We propose to learn congestion patterns explicitly and devise a novel "Sense--Learn--Reason--Predict" framework.
By decomposing the learning phases into two stages, a "student" can learn contextual cues from a "teacher" while generating collision-free trajectories.
In experiments, we demonstrate that the proposed model is able to generate collision-free trajectory predictions in a synthetic dataset.
arXiv Detail & Related papers (2021-03-26T02:42:33Z) - Instance-Aware Predictive Navigation in Multi-Agent Environments [93.15055834395304]
We propose an Instance-Aware Predictive Control (IPC) approach, which forecasts interactions between agents as well as future scene structures.
We adopt a novel multi-instance event prediction module to estimate the possible interaction among agents in the ego-centric view.
We design a sequential action sampling strategy to better leverage predicted states on both scene-level and instance-level.
arXiv Detail & Related papers (2021-01-14T22:21:25Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
We present an online framework for safe crowd-robot interaction based on risk-sensitive optimal control, wherein the risk is modeled by the entropic risk measure.
Our modular approach decouples the crowd-robot interaction into learning-based prediction and model-based control.
A simulation study and a real-world experiment show that the proposed framework can accomplish safe and efficient navigation while avoiding collisions with more than 50 humans in the scene.
arXiv Detail & Related papers (2020-09-12T02:02:52Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.