CINeMA: Conditional Implicit Neural Multi-Modal Atlas for a Spatio-Temporal Representation of the Perinatal Brain
- URL: http://arxiv.org/abs/2506.09668v1
- Date: Wed, 11 Jun 2025 12:39:41 GMT
- Title: CINeMA: Conditional Implicit Neural Multi-Modal Atlas for a Spatio-Temporal Representation of the Perinatal Brain
- Authors: Maik Dannecker, Vasiliki Sideri-Lampretsa, Sophie Starck, Angeline Mihailov, Mathieu Milh, Nadine Girard, Guillaume Auzias, Daniel Rueckert,
- Abstract summary: CINeMA is a novel framework for creating high-resolution, neuro-temporal, multimodal brain atlases.<n>It operates in latent space avoiding compute-intensive image registration and reducing atlas construction times from days to minutes.<n>It enables flexible conditioning on anatomical features including GA, birth age, and pathologies like ventriculomegaly (VM) and agenesis of the corpus callosum (ACC)
- Score: 7.559401016563897
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Magnetic resonance imaging of fetal and neonatal brains reveals rapid neurodevelopment marked by substantial anatomical changes unfolding within days. Studying this critical stage of the developing human brain, therefore, requires accurate brain models-referred to as atlases-of high spatial and temporal resolution. To meet these demands, established traditional atlases and recently proposed deep learning-based methods rely on large and comprehensive datasets. This poses a major challenge for studying brains in the presence of pathologies for which data remains scarce. We address this limitation with CINeMA (Conditional Implicit Neural Multi-Modal Atlas), a novel framework for creating high-resolution, spatio-temporal, multimodal brain atlases, suitable for low-data settings. Unlike established methods, CINeMA operates in latent space, avoiding compute-intensive image registration and reducing atlas construction times from days to minutes. Furthermore, it enables flexible conditioning on anatomical features including GA, birth age, and pathologies like ventriculomegaly (VM) and agenesis of the corpus callosum (ACC). CINeMA supports downstream tasks such as tissue segmentation and age prediction whereas its generative properties enable synthetic data creation and anatomically informed data augmentation. Surpassing state-of-the-art methods in accuracy, efficiency, and versatility, CINeMA represents a powerful tool for advancing brain research. We release the code and atlases at https://github.com/m-dannecker/CINeMA.
Related papers
- Conditional Fetal Brain Atlas Learning for Automatic Tissue Segmentation [0.8326370619658685]
We introduce a novel deep-learning framework for generating continuous, age-specific fetal brain atlases.<n>The framework combines a direct registration model with a conditional discriminator.<n>It was trained on a curated dataset of 219 neurotypical fetal MRIs spanning from 21 to 37 weeks of gestation.
arXiv Detail & Related papers (2025-08-06T15:07:39Z) - Deeply Supervised Multi-Task Autoencoder for Biological Brain Age estimation using three dimensional T$_1$-weighted magnetic resonance imaging [0.0]
We propose a Deeply Supervised Multitask Autoencoder (DSMT-AE) framework for brain age estimation.<n>DSMT-AE employs deep supervision, which involves applying supervisory signals at intermediate layers during training.<n>We extensively evaluate DSMT-AE on the Open Brain Health Benchmark dataset.
arXiv Detail & Related papers (2025-08-03T03:24:02Z) - CSBrain: A Cross-scale Spatiotemporal Brain Foundation Model for EEG Decoding [57.90382885533593]
We propose a Cross-scale Spatiotemporal Brain foundation model for generalized decoding EEG signals.<n>We show that CSBrain consistently outperforms task-specific and foundation model baselines.<n>These results establish cross-scale modeling as a key inductive bias and position CSBrain as a robust backbone for future brain-AI research.
arXiv Detail & Related papers (2025-06-29T03:29:34Z) - Voxel-Level Brain States Prediction Using Swin Transformer [65.9194533414066]
We propose a novel architecture which employs a 4D Shifted Window (Swin) Transformer as encoder to efficiently learn-temporal information and a convolutional decoder to enable brain state prediction at the same spatial and temporal resolution as the input fMRI data.<n>Our model has shown high accuracy when predicting 7.2s resting-state brain activities based on the prior 23.04s fMRI time series.<n>This shows promising evidence that thetemporal organization of the human brain can be learned by a Swin Transformer model, at high resolution, which provides a potential for reducing fMRI scan time and the development of brain-computer interfaces
arXiv Detail & Related papers (2025-06-13T04:14:38Z) - Generative forecasting of brain activity enhances Alzheimer's classification and interpretation [16.09844316281377]
Resting-state functional magnetic resonance imaging (rs-fMRI) offers a non-invasive method to monitor neural activity.
Deep learning has shown promise in capturing these representations.
In this study, we focus on time series forecasting of independent component networks derived from rs-fMRI as a form of data augmentation.
arXiv Detail & Related papers (2024-10-30T23:51:31Z) - Latent Representation Learning for Multimodal Brain Activity Translation [14.511112110420271]
We present the Spatiotemporal Alignment of Multimodal Brain Activity (SAMBA) framework, which bridges the spatial and temporal resolution gaps across modalities.
SAMBA introduces a novel attention-based wavelet decomposition for spectral filtering of electrophysiological recordings.
We show that the training of SAMBA, aside from achieving translation, also learns a rich representation of brain information processing.
arXiv Detail & Related papers (2024-09-27T05:50:29Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - CINA: Conditional Implicit Neural Atlas for Spatio-Temporal
Representation of Fetal Brains [10.512435553279346]
CINA learns a general representation of the fetal brain and encodes subject specific information into latent code.
After training, CINA can construct a faithful atlas with tissue probability maps of the fetal brain for any gestational age.
CINA demonstrates superior accuracy for neurotypical brains and pathological brains with ventricullyomega.
arXiv Detail & Related papers (2024-03-13T14:02:42Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - SF2Former: Amyotrophic Lateral Sclerosis Identification From
Multi-center MRI Data Using Spatial and Frequency Fusion Transformer [3.408266725482757]
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder involving motor neuron degeneration.
Deep learning has turned into a prominent class of machine learning programs in computer vision.
This study introduces a framework named SF2Former that leverages vision transformer architecture's power to distinguish the ALS subjects from the control group.
arXiv Detail & Related papers (2023-02-21T18:16:20Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
We propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis.
We first use a set of well-defined multiscale atlases to compute multiscale FCNs.
Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling.
arXiv Detail & Related papers (2022-09-22T04:17:57Z) - Local semi-supervised approach to brain tissue classification in child
brain MRI [0.0]
Most segmentation methods in child brain MRI are supervised and are based on global intensity probabilistic computation of major brain structures.
In this paper, we consider classification into major tissue classes (white matter and grey matter) and the cerebrospinal fluid.
We show that our method improves detection of the tissue classes by its comparison to state-of-the-art classification techniques known as Partial Volume Estimation.
arXiv Detail & Related papers (2020-05-20T06:43:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.