論文の概要: Alice and the Caterpillar: A more descriptive null model for assessing data mining results
- arxiv url: http://arxiv.org/abs/2506.09764v1
- Date: Wed, 11 Jun 2025 14:04:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 06:35:03.033784
- Title: Alice and the Caterpillar: A more descriptive null model for assessing data mining results
- Title(参考訳): Alice and the Caterpillar: データマイニング結果を評価するためのより記述的なnullモデル
- Authors: Giulia Preti, Gianmarco De Francisci Morales, Matteo Riondato,
- Abstract要約: 観測されたバイナリトランザクションおよびシーケンスデータセットから得られた結果を評価するための新しいヌルモデルを導入する。
我々のnullモデルは、既存のモデルよりも観測されたデータセットのより多くのプロパティを保持します。
nullモデルからデータセットをサンプリングするためのマルコフ連鎖モンテカルロアルゴリズムのスイートであるAliceについて説明する。
- 参考スコア(独自算出の注目度): 10.773673764125435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce novel null models for assessing the results obtained from observed binary transactional and sequence datasets, using statistical hypothesis testing. Our null models maintain more properties of the observed dataset than existing ones. Specifically, they preserve the Bipartite Joint Degree Matrix of the bipartite (multi-)graph corresponding to the dataset, which ensures that the number of caterpillars, i.e., paths of length three, is preserved, in addition to other properties considered by other models. We describe Alice, a suite of Markov chain Monte Carlo algorithms for sampling datasets from our null models, based on a carefully defined set of states and efficient operations to move between them. The results of our experimental evaluation show that Alice mixes fast and scales well, and that our null model finds different significant results than ones previously considered in the literature.
- Abstract(参考訳): 統計的仮説テストを用いて、観測されたバイナリトランザクションとシーケンスのデータセットから得られた結果を評価するための新しいヌルモデルを導入する。
我々のnullモデルは、既存のモデルよりも観測されたデータセットのより多くのプロパティを保持します。
具体的には、データセットに対応するバイパルタイト (multi-) グラフのバイパルタイト結合度行列を保存し、他のモデルで考慮された他の特性に加えて、長さ3の経路である毛虫の数が保存されることを保証する。
Aliceはマルコフ連鎖モンテカルロアルゴリズムのスイートで、慎重に定義された状態のセットとそれらの間を移動する効率的な操作に基づいて、nullモデルからデータセットをサンプリングする。
実験の結果, Alice は高速に混合し, スケールが良好であり, 我々のnull モデルでは, これまで文献で考えられていたものと異なる有意な結果が得られた。
関連論文リスト
- Self-Rationalization in the Wild: A Large Scale Out-of-Distribution Evaluation on NLI-related tasks [59.47851630504264]
自由文の説明は表現力があり理解しやすいが、多くのデータセットには注釈付き説明データがない。
我々は、T5-LargeモデルとOLMo-7Bモデルを微調整し、微調整データ品質、微調整サンプル数、少数ショット選択方法の影響を評価した。
モデルは、自然言語推論(NLI)、ファクトチェック、抽象的な要約における幻覚検出の3つのタスクにまたがる19の多様なOODデータセットで評価される。
論文 参考訳(メタデータ) (2025-02-07T10:01:32Z) - Hybrid Open-set Segmentation with Synthetic Negative Data [0.0]
開集合セグメンテーションは、閉集合分類と異常検出を補完することで実現できる。
生成的および識別的手がかりを融合させる新しい異常スコアを提案する。
実験では、計算オーバーヘッドが無視できないにもかかわらず、強力なオープンセット性能を示す。
論文 参考訳(メタデータ) (2023-01-19T11:02:44Z) - Understanding Factual Errors in Summarization: Errors, Summarizers,
Datasets, Error Detectors [105.12462629663757]
本研究では、既存の9つのデータセットから事実性エラーアノテーションを集約し、基礎となる要約モデルに従ってそれらを階層化する。
本稿では,この階層化ベンチマークにおいて,最近のChatGPTベースの指標を含む最先端の事実性指標の性能を比較し,その性能が様々な種類の要約モデルで大きく異なることを示す。
論文 参考訳(メタデータ) (2022-05-25T15:26:48Z) - Task Affinity with Maximum Bipartite Matching in Few-Shot Learning [28.5184196829547]
本稿では,1つのタスクの知識を活用して,別のタスクを学習する複雑性を表現するための非対称親和性スコアを提案する。
特に、このスコアを用いて、テストデータに関連するトレーニングデータラベルを見つけ、発見した関連するデータを活用して、いくつかのショットモデルをエピソード的に微調整する。
論文 参考訳(メタデータ) (2021-10-05T23:15:55Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
我々は,18の事前学習トランスフォーマーモデルから予測した29のデータセットを個別のテスト例で評価した。
Quoref、HellaSwag、MC-TACOは最先端のモデルを区別するのに最適である。
また、QAMRやSQuAD2.0のようなQAデータセットに使用されるスパン選択タスク形式は、強いモデルと弱いモデルとの差別化に有効である。
論文 参考訳(メタデータ) (2021-06-01T22:33:53Z) - Machine learning with incomplete datasets using multi-objective
optimization models [1.933681537640272]
分類モデルが学習されている間、欠落した値を扱うオンラインアプローチを提案する。
命令とモデル選択のための2つの目的関数を持つ多目的最適化モデルを開発する。
NSGA IIに基づく進化的アルゴリズムを用いて最適解を求める。
論文 参考訳(メタデータ) (2020-12-04T03:44:33Z) - Improving Zero and Few-Shot Abstractive Summarization with Intermediate
Fine-tuning and Data Augmentation [101.26235068460551]
大規模テキストコーパス上での自己教師対象による事前学習モデルは、英語テキスト要約タスクにおける最先端のパフォーマンスを達成する。
モデルは通常、数十万のデータポイントで微調整されるが、これは新しいニッチなドメインに要約を適用する際に、実現不可能な要件である。
我々は、教師なし、データセット固有の方法で要約のための訓練済みモデルを微調整するための、WikiTransferと呼ばれる新しい一般化可能な手法を紹介した。
論文 参考訳(メタデータ) (2020-10-24T08:36:49Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z) - Evaluating Models' Local Decision Boundaries via Contrast Sets [119.38387782979474]
テストデータの体系的なギャップを埋めるのに役立つNLPのための新しいアノテーションパラダイムを提案する。
10種類のNLPデータセットに対してコントラストセットを作成することで,コントラストセットの有効性を示す。
我々のコントラストセットは明示的には逆ではないが、モデルの性能は元のテストセットよりも大幅に低い。
論文 参考訳(メタデータ) (2020-04-06T14:47:18Z) - Preference Modeling with Context-Dependent Salient Features [12.403492796441434]
本稿では,各項目の特徴について,ノイズの多いペアワイド比較から,項目集合のランキングを推定する問題を考察する。
私たちのキーとなる観察は、他の項目から分離して比較した2つの項目は、機能の健全なサブセットのみに基づいて比較できるということです。
論文 参考訳(メタデータ) (2020-02-22T04:05:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。