Private Memorization Editing: Turning Memorization into a Defense to Strengthen Data Privacy in Large Language Models
- URL: http://arxiv.org/abs/2506.10024v1
- Date: Mon, 09 Jun 2025 17:57:43 GMT
- Title: Private Memorization Editing: Turning Memorization into a Defense to Strengthen Data Privacy in Large Language Models
- Authors: Elena Sofia Ruzzetti, Giancarlo A. Xompero, Davide Venditti, Fabio Massimo Zanzotto,
- Abstract summary: We introduce Private Memorization Editing (PME), an approach for preventing private data leakage.<n>We detect a memorized PII and then mitigate the memorization of PII by editing a model knowledge of its training data.<n>PME can effectively reduce the number of leaked PII in a number of configurations, in some cases even reducing the accuracy of the privacy attacks to zero.
- Score: 1.2874523233023452
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) memorize, and thus, among huge amounts of uncontrolled data, may memorize Personally Identifiable Information (PII), which should not be stored and, consequently, not leaked. In this paper, we introduce Private Memorization Editing (PME), an approach for preventing private data leakage that turns an apparent limitation, that is, the LLMs' memorization ability, into a powerful privacy defense strategy. While attacks against LLMs have been performed exploiting previous knowledge regarding their training data, our approach aims to exploit the same kind of knowledge in order to make a model more robust. We detect a memorized PII and then mitigate the memorization of PII by editing a model knowledge of its training data. We verify that our procedure does not affect the underlying language model while making it more robust against privacy Training Data Extraction attacks. We demonstrate that PME can effectively reduce the number of leaked PII in a number of configurations, in some cases even reducing the accuracy of the privacy attacks to zero.
Related papers
- Model Inversion Attacks on Llama 3: Extracting PII from Large Language Models [0.0]
Large language models (LLMs) have transformed natural language processing, but their ability to memorize training data poses significant privacy risks.<n>This paper investigates model inversion attacks on the Llama 3.2 model, a multilingual LLM developed by Meta.
arXiv Detail & Related papers (2025-07-06T17:24:17Z) - Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Enhancing Data Privacy in Large Language Models through Private Association Editing [1.078439500019266]
Large language models (LLMs) require a significant redesign in solutions to preserve privacy in data-intensive applications.
This paper introduces Private Association Editing (PAE) as a novel defense approach for private data leakage.
arXiv Detail & Related papers (2024-06-26T10:08:47Z) - FLTrojan: Privacy Leakage Attacks against Federated Language Models Through Selective Weight Tampering [2.2194815687410627]
We show how a malicious client can leak the privacy-sensitive data of some other users in FL even without any cooperation from the server.<n>Our best-performing method improves the membership inference recall by 29% and achieves up to 71% private data reconstruction.
arXiv Detail & Related papers (2023-10-24T19:50:01Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Mitigating Approximate Memorization in Language Models via Dissimilarity
Learned Policy [0.0]
Large Language models (LLMs) are trained on large amounts of data.
LLMs showed to memorize parts of the training data and emit those data verbatim when an adversary prompts appropriately.
arXiv Detail & Related papers (2023-05-02T15:53:28Z) - Students Parrot Their Teachers: Membership Inference on Model
Distillation [54.392069096234074]
We study the privacy provided by knowledge distillation to both the teacher and student training sets.
Our attacks are strongest when student and teacher sets are similar, or when the attacker can poison the teacher set.
arXiv Detail & Related papers (2023-03-06T19:16:23Z) - Preventing Verbatim Memorization in Language Models Gives a False Sense
of Privacy [91.98116450958331]
We argue that verbatim memorization definitions are too restrictive and fail to capture more subtle forms of memorization.
Specifically, we design and implement an efficient defense that perfectly prevents all verbatim memorization.
We conclude by discussing potential alternative definitions and why defining memorization is a difficult yet crucial open question for neural language models.
arXiv Detail & Related papers (2022-10-31T17:57:55Z) - Knowledge Unlearning for Mitigating Privacy Risks in Language Models [31.322818016245087]
We propose knowledge unlearning as an alternative method to reduce privacy risks for language models.
We show that simply applying the unlikelihood training objective to target token sequences is effective at forgetting them.
We show that unlearning can give a stronger empirical privacy guarantee in scenarios where the data vulnerable to extraction attacks are known a priori.
arXiv Detail & Related papers (2022-10-04T10:18:11Z) - The Privacy Onion Effect: Memorization is Relative [76.46529413546725]
We show an Onion Effect of memorization: removing the "layer" of outlier points that are most vulnerable exposes a new layer of previously-safe points to the same attack.
It suggests that privacy-enhancing technologies such as machine unlearning could actually harm the privacy of other users.
arXiv Detail & Related papers (2022-06-21T15:25:56Z) - Just Fine-tune Twice: Selective Differential Privacy for Large Language
Models [69.66654761324702]
We propose a simple yet effective just-fine-tune-twice privacy mechanism to achieve SDP for large Transformer-based language models.
Experiments show that our models achieve strong performance while staying robust to the canary insertion attack.
arXiv Detail & Related papers (2022-04-15T22:36:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.