Online Discovery of Simulation Models for Evolving Business Processes (Extended Version)
- URL: http://arxiv.org/abs/2506.10049v2
- Date: Tue, 24 Jun 2025 08:14:12 GMT
- Title: Online Discovery of Simulation Models for Evolving Business Processes (Extended Version)
- Authors: Francesco Vinci, Gyunam Park, Wil van der Aalst, Massimiliano de Leoni,
- Abstract summary: Business Process Simulation (BPS) refers to techniques designed to replicate the dynamic behavior of a business process.<n>Many approaches have been proposed to automatically discover simulation models from historical event logs.<n>In this paper, we propose a streaming process simulation discovery technique that integrates Incremental Process Discovery with Online Machine Learning methods.
- Score: 1.0579965347526206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Business Process Simulation (BPS) refers to techniques designed to replicate the dynamic behavior of a business process. Many approaches have been proposed to automatically discover simulation models from historical event logs, reducing the cost and time to manually design them. However, in dynamic business environments, organizations continuously refine their processes to enhance efficiency, reduce costs, and improve customer satisfaction. Existing techniques to process simulation discovery lack adaptability to real-time operational changes. In this paper, we propose a streaming process simulation discovery technique that integrates Incremental Process Discovery with Online Machine Learning methods. This technique prioritizes recent data while preserving historical information, ensuring adaptation to evolving process dynamics. Experiments conducted on four different event logs demonstrate the importance in simulation of giving more weight to recent data while retaining historical knowledge. Our technique not only produces more stable simulations but also exhibits robustness in handling concept drift, as highlighted in one of the use cases.
Related papers
- AgentSimulator: An Agent-based Approach for Data-driven Business Process Simulation [6.590869939300887]
Business process simulation (BPS) is a versatile technique for estimating process performance across various scenarios.
This paper introduces AgentSimulator, a resource-first BPS approach that discovers a multi-agent system from an event log.
Our experiments show that AgentSimulator achieves computation state-of-the-art simulation accuracy with significantly lower times than existing approaches.
arXiv Detail & Related papers (2024-08-16T07:19:11Z) - The Artificial Neural Twin -- Process Optimization and Continual Learning in Distributed Process Chains [3.79770624632814]
We propose the Artificial Neural Twin, which combines concepts from model predictive control, deep learning, and sensor networks.
Our approach introduces differentiable data fusion to estimate the state of distributed process steps.
By treating the interconnected process steps as a quasi neural-network, we can backpropagate loss gradients for process optimization or model fine-tuning to process parameters.
arXiv Detail & Related papers (2024-03-27T08:34:39Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
We study the problem of offline pre-training and online fine-tuning for reinforcement learning from high-dimensional observations.
Existing model-based offline RL methods are not suitable for offline-to-online fine-tuning in high-dimensional domains.
We propose an on-policy model-based method that can efficiently reuse prior data through model-based value expansion and policy regularization.
arXiv Detail & Related papers (2024-01-06T21:04:31Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
We present a model-based RL method that learns to transfer potentially useful dynamics and action demonstrations from offline data to a novel task.
The main idea is to use the world models not only as simulators for behavior learning but also as tools to measure the task relevance.
We demonstrate the advantages of our approach compared with the state-of-the-art methods in Meta-World and DeepMind Control Suite.
arXiv Detail & Related papers (2023-06-06T02:24:41Z) - Perception Imitation: Towards Synthesis-free Simulator for Autonomous
Vehicles [45.27200446670184]
We propose a perception imitation method to simulate results of a certain perception model, and discuss a new route of autonomous driving simulator without data synthesis.
Experiments show that our method is effective to model the behavior of learning-based perception model, and can be further applied in the proposed simulation route smoothly.
arXiv Detail & Related papers (2023-04-19T01:27:02Z) - CoSMo: a Framework to Instantiate Conditioned Process Simulation Models [1.6021728114882514]
This paper introduces a novel recurrent neural architecture tailored to discover COnditioned process Simulation MOdels (CoSMo) based on user-based constraints or any other nature of a-priori knowledge.
This architecture facilitates the simulation of event logs that adhere to specific constraints by incorporating declarative-based rules into the learning phase as an attempt to fill the gap of incorporating information into deep learning models to perform what-if analysis.
arXiv Detail & Related papers (2023-03-31T08:26:18Z) - Transfer learning for process design with reinforcement learning [3.3084327202914476]
We propose to utilize transfer learning for process design with RL in combination with rigorous simulation methods.
transfer learning is an established approach from machine learning that stores knowledge gained while solving one problem and reuses this information on a different target domain.
Our results show that transfer learning enables RL to economically design feasible flowsheets with DWSIM, resulting in a flowsheet with an 8% higher revenue.
arXiv Detail & Related papers (2023-02-07T10:31:14Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
upcoming exascale era will provide a new generation of physics simulations with high resolution.
These simulations will have a high resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible.
This work presents an approach that trains a neural network concurrently to a running simulation without data on a disk.
arXiv Detail & Related papers (2022-11-09T09:55:14Z) - Simulation-Based Parallel Training [55.41644538483948]
We present our ongoing work to design a training framework that alleviates those bottlenecks.
It generates data in parallel with the training process.
We present a strategy to mitigate this bias with a memory buffer.
arXiv Detail & Related papers (2022-11-08T09:31:25Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Learning Accurate Business Process Simulation Models from Event Logs via
Automated Process Discovery and Deep Learning [0.8164433158925593]
Data-Driven Simulation (DDS) methods learn process simulation models from event logs.
Deep Learning (DL) models are able to accurately capture such temporal dynamics.
This paper presents a hybrid approach to learn process simulation models from event logs.
arXiv Detail & Related papers (2021-03-22T15:34:57Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
This work develops a methodology that enables data-driven methods to continuously learn and optimize in a dynamic environment.
We propose to build the notion of continual learning into the modeling process of learning wireless systems.
Our design is based on a novel min-max formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2020-11-16T08:24:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.