Efficient kernelized bandit algorithms via exploration distributions
- URL: http://arxiv.org/abs/2506.10091v1
- Date: Wed, 11 Jun 2025 18:23:43 GMT
- Title: Efficient kernelized bandit algorithms via exploration distributions
- Authors: Bingshan Hu, Zheng He, Danica J. Sutherland,
- Abstract summary: We propose a class of computationally efficient kernelized bandit algorithms, which we call GP-Generic.<n>We show that our proposed generic algorithm realizes a wide range of concrete algorithms that achieve $tildeO(gamma_TsqrtT)$ regret bounds.
- Score: 13.86858382375188
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a kernelized bandit problem with a compact arm set ${X} \subset \mathbb{R}^d $ and a fixed but unknown reward function $f^*$ with a finite norm in some Reproducing Kernel Hilbert Space (RKHS). We propose a class of computationally efficient kernelized bandit algorithms, which we call GP-Generic, based on a novel concept: exploration distributions. This class of algorithms includes Upper Confidence Bound-based approaches as a special case, but also allows for a variety of randomized algorithms. With careful choice of exploration distribution, our proposed generic algorithm realizes a wide range of concrete algorithms that achieve $\tilde{O}(\gamma_T\sqrt{T})$ regret bounds, where $\gamma_T$ characterizes the RKHS complexity. This matches known results for UCB- and Thompson Sampling-based algorithms; we also show that in practice, randomization can yield better practical results.
Related papers
- Differentially-Private Hierarchical Clustering with Provable
Approximation Guarantees [79.59010418610625]
We study differentially private approximation algorithms for hierarchical clustering.
We show strong lower bounds for the problem: that any $epsilon$-DP algorithm must exhibit $O(|V|2/ epsilon)$-additive error for an input dataset.
We propose a private $1+o(1)$ approximation algorithm which also recovers the blocks exactly.
arXiv Detail & Related papers (2023-01-31T19:14:30Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
General tools for designing efficient private estimation algorithms.
First efficient $(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery.
arXiv Detail & Related papers (2023-01-11T09:12:28Z) - Misspecified Gaussian Process Bandit Optimization [59.30399661155574]
Kernelized bandit algorithms have shown strong empirical and theoretical performance for this problem.
We introduce a emphmisspecified kernelized bandit setting where the unknown function can be $epsilon$--uniformly approximated by a function with a bounded norm in some Reproducing Kernel Hilbert Space (RKHS)
We show that our algorithm achieves optimal dependence on $epsilon$ with no prior knowledge of misspecification.
arXiv Detail & Related papers (2021-11-09T09:00:02Z) - Gaussian Process Bandit Optimization with Few Batches [49.896920704012395]
We introduce a batch algorithm inspired by finite-arm bandit algorithms.
We show that it achieves the cumulative regret upper bound $Oast(sqrtTgamma_T)$ using $O(loglog T)$ batches within time horizon $T$.
In addition, we propose a modified version of our algorithm, and characterize how the regret is impacted by the number of batches.
arXiv Detail & Related papers (2021-10-15T00:54:04Z) - Thompson Sampling for Unimodal Bandits [21.514495320038712]
We propose a Thompson Sampling algorithm for emphunimodal bandits, where the expected reward is unimodal over the partially ordered arms.
For Gaussian rewards, the regret of our algorithm is $mathcalO(log T)$, which is far better than standard Thompson Sampling algorithms.
arXiv Detail & Related papers (2021-06-15T14:40:34Z) - Corralling Stochastic Bandit Algorithms [54.10645564702416]
We show that the regret of the corralling algorithms is no worse than that of the best algorithm containing the arm with the highest reward.
We show that the gap between the highest reward and other rewards depends on the gap between the highest reward and other rewards.
arXiv Detail & Related papers (2020-06-16T15:33:12Z) - Multi-Scale Zero-Order Optimization of Smooth Functions in an RKHS [19.252319300590653]
A black-box function $f:mathcalX mapsto mathbbR$ is optimized under the assumption that $f$ is H"older smooth and has bounded norm in the RKHS associated with a given kernel $K$.
In this paper, we propose a new algorithm (textttLP-GP-UCB) where the usual GP surrogate model is augmented with Local Polynomial (LP) estimators of the H" smooth parameter $f$.
arXiv Detail & Related papers (2020-05-11T01:55:39Z) - Model Selection in Contextual Stochastic Bandit Problems [51.94632035240787]
We develop a meta-algorithm that selects between base algorithms.
We show through a lower bound that even when one of the base algorithms has $O(sqrtT)$ regret, in general it is impossible to get better than $Omega(sqrtT)$ regret.
arXiv Detail & Related papers (2020-03-03T18:46:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.