Physiological-Model-Based Neural Network for Heart Rate Estimation during Daily Physical Activities
- URL: http://arxiv.org/abs/2506.10144v1
- Date: Wed, 11 Jun 2025 19:48:08 GMT
- Title: Physiological-Model-Based Neural Network for Heart Rate Estimation during Daily Physical Activities
- Authors: Yaowen Zhang, Libera Fresiello, Peter H. Veltink, Dirk W. Donker, Ying Wang,
- Abstract summary: Heart failure (HF) poses a significant global health challenge, with early detection offering opportunities for improved outcomes.<n>The estimation of individualized heart rate (HR) serves as a dynamic digital twin, enabling precise tracking of cardiac health biomarkers.<n>This study introduces a novel physiological-model-based neural network (PMB-NN) framework for HR estimation based on oxygen uptake (VO2) data during daily physical activities.
- Score: 3.5717820799814306
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Heart failure (HF) poses a significant global health challenge, with early detection offering opportunities for improved outcomes. Abnormalities in heart rate (HR), particularly during daily activities, may serve as early indicators of HF risk. However, existing HR monitoring tools for HF detection are limited by their reliability on population-based averages. The estimation of individualized HR serves as a dynamic digital twin, enabling precise tracking of cardiac health biomarkers. Current HR estimation methods, categorized into physiologically-driven and purely data-driven models, struggle with efficiency and interpretability. This study introduces a novel physiological-model-based neural network (PMB-NN) framework for HR estimation based on oxygen uptake (VO2) data during daily physical activities. The framework was trained and tested on individual datasets from 12 participants engaged in activities including resting, cycling, and running. By embedding physiological constraints, which were derived from our proposed simplified human movement physiological model (PM), into the neural network training process, the PMB-NN model adheres to human physiological principles while achieving high estimation accuracy, with a median R$^2$ score of 0.8 and an RMSE of 8.3 bpm. Comparative statistical analysis demonstrates that the PMB-NN achieves performance on par with the benchmark neural network model while significantly outperforming traditional physiological model (p=0.002). In addition, our PMB-NN is adept at identifying personalized parameters of the PM, enabling the PM to generate reasonable HR estimation. The proposed framework with a precise VO2 estimation system derived from body movements enables the future possibilities of personalized and real-time cardiac monitoring during daily life physical activities.
Related papers
- Physics-Embedded Neural Networks for sEMG-based Continuous Motion Estimation [3.606446851103922]
sEMG-based motion estimation methods often rely on subject-specific musculoskeletal (MSK) models that are difficult to calibrate.<n>This paper introduces a novel Physics-Embedded Neural Network (PENN) that combines interpretable MSK forward-dynamics with data-driven residual learning.
arXiv Detail & Related papers (2025-06-17T16:07:20Z) - From Lab to Wrist: Bridging Metabolic Monitoring and Consumer Wearables for Heart Rate and Oxygen Consumption Modeling [7.104151688826837]
We introduce a comprehensive framework -- what we believe to be the first capable of predicting instantaneous oxygen consumption trajectories exclusively from consumer-grade wearable data.<n>Our approach employs two complementary physiological models: (1) accurate modeling of heart rate (HR) dynamics via a physiologically constrained ordinary differential equation (ODE) and neural Kalman filter, trained on over 3 million HR observations.<n>Our method achieves mean absolute percentage errors of approximately 13%, effectively capturing rapid physiological transitions and steady-state conditions across diverse running intensities.
arXiv Detail & Related papers (2025-04-30T18:15:00Z) - Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
Photoplethysmography and electrocardiography can potentially enable continuous blood pressure (BP) monitoring.<n>Yet accurate and robust machine learning (ML) models remains challenging due to variability in data quality and patient-specific factors.<n>In this work, we investigate whether a model pre-trained on one modality can effectively be exploited to improve the accuracy of a different signal type.<n>Our approach achieves near state-of-the-art accuracy for diastolic BP and surpasses by 1.5x the accuracy of prior works for systolic BP.
arXiv Detail & Related papers (2025-02-10T13:33:12Z) - Leveraging Cardiovascular Simulations for In-Vivo Prediction of Cardiac Biomarkers [43.17768785084301]
We train an amortized neural posterior estimator on a newly built large dataset of cardiac simulations.<n>We incorporate elements modeling effects to better align simulated data with real-world measurements.<n>The proposed framework can further integrate in-vivo data sources to refine its predictive capabilities on real-world data.
arXiv Detail & Related papers (2024-12-23T13:05:17Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Simulation-based Inference for Cardiovascular Models [43.55219268578912]
We use simulation-based inference to solve the inverse problem of mapping waveforms back to plausible physiological parameters.<n>We perform an in-silico uncertainty analysis of five biomarkers of clinical interest.<n>We study the gap between in-vivo and in-silico with the MIMIC-III waveform database.
arXiv Detail & Related papers (2023-07-26T02:34:57Z) - PhysioMTL: Personalizing Physiological Patterns using Optimal Transport
Multi-Task Regression [21.254400561280296]
Heart rate variability (HRV) is a practical and noninvasive measure of autonomic nervous system activity.
We develop Physiological Multitask-Learning (PhysioMTL) by harnessing Optimal Transport theory within a Multitask-learning framework.
arXiv Detail & Related papers (2022-03-19T19:14:25Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - Self-supervised transfer learning of physiological representations from
free-living wearable data [12.863826659440026]
We present a novel self-supervised representation learning method using activity and heart rate (HR) signals without semantic labels.
We evaluate our model in the largest free-living combined-sensing dataset (comprising >280k hours of wrist accelerometer & wearable ECG data)
arXiv Detail & Related papers (2020-11-18T23:21:34Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z) - RNNs on Monitoring Physical Activity Energy Expenditure in Older People [0.0]
We propose a model known for its ability to model sequential data, the Recurrent Neural Network (RNN)
In this paper, we describe our efforts to go beyond the standard facilities of a GRU-based RNN, with the aim of achieving accuracy surpassing the state of the art.
The resulting architecture manages to increase its performance by approximatelly 10% while decreasing training input by a factor of 10.
arXiv Detail & Related papers (2020-06-01T18:02:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.