Physics-Embedded Neural Networks for sEMG-based Continuous Motion Estimation
- URL: http://arxiv.org/abs/2506.22459v1
- Date: Tue, 17 Jun 2025 16:07:20 GMT
- Title: Physics-Embedded Neural Networks for sEMG-based Continuous Motion Estimation
- Authors: Wending Heng, Chaoyuan Liang, Yihui Zhao, Zhiqiang Zhang, Glen Cooper, Zhenhong Li,
- Abstract summary: sEMG-based motion estimation methods often rely on subject-specific musculoskeletal (MSK) models that are difficult to calibrate.<n>This paper introduces a novel Physics-Embedded Neural Network (PENN) that combines interpretable MSK forward-dynamics with data-driven residual learning.
- Score: 3.606446851103922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately decoding human motion intentions from surface electromyography (sEMG) is essential for myoelectric control and has wide applications in rehabilitation robotics and assistive technologies. However, existing sEMG-based motion estimation methods often rely on subject-specific musculoskeletal (MSK) models that are difficult to calibrate, or purely data-driven models that lack physiological consistency. This paper introduces a novel Physics-Embedded Neural Network (PENN) that combines interpretable MSK forward-dynamics with data-driven residual learning, thereby preserving physiological consistency while achieving accurate motion estimation. The PENN employs a recursive temporal structure to propagate historical estimates and a lightweight convolutional neural network for residual correction, leading to robust and temporally coherent estimations. A two-phase training strategy is designed for PENN. Experimental evaluations on six healthy subjects show that PENN outperforms state-of-the-art baseline methods in both root mean square error (RMSE) and $R^2$ metrics.
Related papers
- Modeling Membrane Degradation in PEM Electrolyzers with Physics-Informed Neural Networks [45.32169712547367]
Proton exchange membrane (PEM) electrolyzers are pivotal for sustainable hydrogen production.<n>Their long-term performance is hindered by membrane degradation, which poses reliability and safety challenges.<n>Traditional physics-based models have been developed, offering interpretability but requiring numerous parameters that are often difficult to measure and calibrate.<n>This study presents the first application of Physics-Informed Neural Networks (PINNs) to model membrane degradation in PEM electrolyzers.
arXiv Detail & Related papers (2025-06-19T15:46:49Z) - KO: Kinetics-inspired Neural Optimizer with PDE Simulation Approaches [45.173398806932376]
This paper introduces KO, a novel neural gradient inspired by kinetic theory and partial differential equation (PDE) simulations.<n>We reimagine the dynamics of network parameters as the evolution of a particle system governed by kinetic principles.<n>This physics-driven approach inherently promotes parameter diversity during optimization, mitigating the phenomenon of parameter condensation.
arXiv Detail & Related papers (2025-05-20T18:00:01Z) - Spatiotemporal Field Generation Based on Hybrid Mamba-Transformer with Physics-informed Fine-tuning [46.67399627400437]
This research confronts the challenge of substantial physical equation discrepancies in the generation of physical fields through trained models.<n>A physical field generation model, named HMT-PF, is developed based on the hybrid Mamba-Transformer architecture.
arXiv Detail & Related papers (2025-05-16T14:40:56Z) - Knowledge-Based Deep Learning for Time-Efficient Inverse Dynamics [5.78355428732981]
We propose a knowledge-based deep learning framework for time-efficient inverse dynamic analysis.<n>The BiGRU neural network is selected as the backbone of our model due to its proficient handling of time-series data.<n>The experimental results have shown that the selected BiGRU architecture outperforms other neural network models when trained using our specifically designed loss function.
arXiv Detail & Related papers (2024-12-06T20:12:52Z) - Physics-informed Deep Learning for Muscle Force Prediction with Unlabeled sEMG Signals [4.382876444149811]
This paper presents a physics-informed deep learning method to predict muscle forces without any label information during model training.<n>In addition, the proposed method could also identify personalized muscle-tendon parameters.<n>The predicted results of muscle forces show comparable or even lower root mean square error (RMSE) and higher coefficient of determination compared with baseline methods.
arXiv Detail & Related papers (2024-12-05T14:47:38Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.<n>A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.<n>The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Enhanced Spatiotemporal Prediction Using Physical-guided And Frequency-enhanced Recurrent Neural Networks [17.91230192726962]
This paper proposes a physical-guided neural network to estimate the Stemporal dynamics.
We also propose an adaptive second-order Runge-Kutta method with physical constraints to model the physical states more precisely.
Our model outperforms state-of-the-art methods and performs best in datasets, with a much smaller parameter count.
arXiv Detail & Related papers (2024-05-23T12:39:49Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
We integrate a musculoskeletal system with a learnable parametric hand model, MANO, to create MS-MANO.
This model emulates the dynamics of muscles and tendons to drive the skeletal system, imposing physiologically realistic constraints on the resulting torque trajectories.
We also propose a simulation-in-the-loop pose refinement framework, BioPR, that refines the initial estimated pose through a multi-layer perceptron network.
arXiv Detail & Related papers (2024-04-16T02:18:18Z) - A Physics-Informed Low-Shot Learning For sEMG-Based Estimation of Muscle
Force and Joint Kinematics [4.878073267556235]
Muscle force and joint kinematics estimation from surface electromyography (sEMG) are essential for real-time biomechanical analysis.
Recent advances in deep neural networks (DNNs) have shown the potential to improve biomechanical analysis in a fully automated and reproducible manner.
This paper presents a novel physics-informed low-shot learning method for sEMG-based estimation of muscle force and joint kinematics.
arXiv Detail & Related papers (2023-07-08T23:01:12Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
We present a conditional generative neural network trained adversarially to generate motor unit activation potential waveforms.
We demonstrate the ability of such a model to predictively interpolate between a much smaller number of numerical model's outputs with a high accuracy.
arXiv Detail & Related papers (2022-11-03T14:49:02Z) - Continuous Forecasting via Neural Eigen Decomposition of Stochastic
Dynamics [47.82509795873254]
We introduce the Neural Eigen-SDE (NESDE) algorithm for sequential prediction with sparse observations and adaptive dynamics.
NESDE applies eigen-decomposition to the dynamics model to allow efficient frequent predictions given sparse observations.
We are the first to provide a patient-adapted prediction for blood coagulation following Heparin dosing in the MIMIC-IV dataset.
arXiv Detail & Related papers (2022-01-31T22:16:50Z) - On feedforward control using physics-guided neural networks: Training
cost regularization and optimized initialization [0.0]
Performance of model-based feedforward controllers is typically limited by the accuracy of the inverse system dynamics model.
This paper proposes a regularization method via identified physical parameters.
It is validated on a real-life industrial linear motor, where it delivers better tracking accuracy and extrapolation.
arXiv Detail & Related papers (2022-01-28T12:51:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.