AI-Based Software Vulnerability Detection: A Systematic Literature Review
- URL: http://arxiv.org/abs/2506.10280v1
- Date: Thu, 12 Jun 2025 01:42:38 GMT
- Title: AI-Based Software Vulnerability Detection: A Systematic Literature Review
- Authors: Samiha Shimmi, Hamed Okhravi, Mona Rahimi,
- Abstract summary: This study presents a systematic review of software vulnerability detection (SVD) research from 2018 to 2023.<n>Our analysis reveals that 91% of studies use AI-based methods, with graph-based models being the most prevalent.<n>We identify key limitations, including dataset quality, interpretability, and highlight emerging opportunities in underexplored techniques.
- Score: 6.604556571951421
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Software vulnerabilities in source code pose serious cybersecurity risks, prompting a shift from traditional detection methods (e.g., static analysis, rule-based matching) to AI-driven approaches. This study presents a systematic review of software vulnerability detection (SVD) research from 2018 to 2023, offering a comprehensive taxonomy of techniques, feature representations, and embedding methods. Our analysis reveals that 91% of studies use AI-based methods, with graph-based models being the most prevalent. We identify key limitations, including dataset quality, reproducibility, and interpretability, and highlight emerging opportunities in underexplored techniques such as federated learning and quantum neural networks, providing a roadmap for future research.
Related papers
- A Systematic Literature Review on Detecting Software Vulnerabilities with Large Language Models [2.518519330408713]
Large Language Models (LLMs) in software engineering have sparked interest in their use for software vulnerability detection.<n>The rapid development of this field has resulted in a fragmented research landscape.<n>This fragmentation makes it difficult to obtain a clear overview of the state-of-the-art or compare and categorize studies meaningfully.
arXiv Detail & Related papers (2025-07-30T13:17:16Z) - Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
computational safety is a mathematical framework that enables the quantitative assessment, formulation, and study of safety challenges in GenAI.<n>We show how sensitivity analysis and loss landscape analysis can be used to detect malicious prompts with jailbreak attempts.<n>We discuss key open research challenges, opportunities, and the essential role of signal processing in computational AI safety.
arXiv Detail & Related papers (2025-02-18T02:26:50Z) - Survey on AI-Generated Media Detection: From Non-MLLM to MLLM [51.91311158085973]
Methods for detecting AI-generated media have evolved rapidly.<n>General-purpose detectors based on MLLMs integrate authenticity verification, explainability, and localization capabilities.<n>Ethical and security considerations have emerged as critical global concerns.
arXiv Detail & Related papers (2025-02-07T12:18:20Z) - SoK: Towards Effective Automated Vulnerability Repair [11.028015952491991]
The increasing prevalence of software vulnerabilities necessitates automated vulnerability repair (AVR) techniques.<n>This Systematization of Knowledge (SoK) provides a comprehensive overview of the landscape, encompassing both synthetic and real-world vulnerabilities.
arXiv Detail & Related papers (2025-01-31T00:35:55Z) - Bringing Order Amidst Chaos: On the Role of Artificial Intelligence in Secure Software Engineering [0.0]
The ever-evolving technological landscape offers both opportunities and threats, creating a dynamic space where chaos and order compete.<n>Secure software engineering (SSE) must continuously address vulnerabilities that endanger software systems.<n>This thesis seeks to bring order to the chaos in SSE by addressing domain-specific differences that impact AI accuracy.
arXiv Detail & Related papers (2025-01-09T11:38:58Z) - A Computational Method for Measuring "Open Codes" in Qualitative Analysis [47.358809793796624]
Open coding is an inductive qualitative process that identifies and interprets "open codes" from datasets.
We present a computational method to measure and identify potential biases from "open codes" systematically.
arXiv Detail & Related papers (2024-11-19T00:44:56Z) - AI-Aided Kalman Filters [65.35350122917914]
The Kalman filter (KF) and its variants are among the most celebrated algorithms in signal processing.<n>Recent developments illustrate the possibility of fusing deep neural networks (DNNs) with classic Kalman-type filtering.<n>This article provides a tutorial-style overview of design approaches for incorporating AI in aiding KF-type algorithms.
arXiv Detail & Related papers (2024-10-16T06:47:53Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Reporting Risks in AI-based Assistive Technology Research: A Systematic Review [2.928964540437144]
We conducted a systematic literature review of research into AI-based assistive technology for persons with visual impairments.
Our study shows that most proposed technologies with a testable prototype have not been evaluated in a human study with members of the sight-loss community.
arXiv Detail & Related papers (2024-07-01T05:22:44Z) - AI in Supply Chain Risk Assessment: A Systematic Literature Review and Bibliometric Analysis [0.0]
This study examines 1,903 articles from Google Scholar and Web of Science, with 54 studies selected through PRISMA guidelines.<n>Our findings reveal that ML models, including Random Forest, XGBoost, and hybrid approaches, significantly enhance risk prediction accuracy and adaptability in post-pandemic contexts.<n>The study underscores the necessity of dynamic strategies, interdisciplinary collaboration, and continuous model evaluation to address challenges such as data quality and interpretability.
arXiv Detail & Related papers (2023-12-12T17:47:51Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.