Augmenting Large Language Models with Static Code Analysis for Automated Code Quality Improvements
- URL: http://arxiv.org/abs/2506.10330v1
- Date: Thu, 12 Jun 2025 03:39:25 GMT
- Title: Augmenting Large Language Models with Static Code Analysis for Automated Code Quality Improvements
- Authors: Seyed Moein Abtahi, Akramul Azim,
- Abstract summary: This study examined code issue detection and revision automation by integrating Large Language Models (LLMs) into software development.<n>A static code analysis framework detects issues such as bugs, vulnerabilities, and code smells within a large-scale software project.<n>Retrieval-augmented generation (RAG) is implemented to enhance the relevance and precision of the revisions.
- Score: 0.36832029288386137
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study examined code issue detection and revision automation by integrating Large Language Models (LLMs) such as OpenAI's GPT-3.5 Turbo and GPT-4o into software development workflows. A static code analysis framework detects issues such as bugs, vulnerabilities, and code smells within a large-scale software project. Detailed information on each issue was extracted and organized to facilitate automated code revision using LLMs. An iterative prompt engineering process is applied to ensure that prompts are structured to produce accurate and organized outputs aligned with the project requirements. Retrieval-augmented generation (RAG) is implemented to enhance the relevance and precision of the revisions, enabling LLM to access and integrate real-time external knowledge. The issue of LLM hallucinations - where the model generates plausible but incorrect outputs - is addressed by a custom-built "Code Comparison App," which identifies and corrects erroneous changes before applying them to the codebase. Subsequent scans using the static code analysis framework revealed a significant reduction in code issues, demonstrating the effectiveness of combining LLMs, static analysis, and RAG to improve code quality, streamline the software development process, and reduce time and resource expenditure.
Related papers
- Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
Code generation with large language models (LLMs) is increasingly adopted in production but fails to ensure code quality.<n>We propose REAL, a reinforcement learning framework that incentivizes LLMs to generate production-quality code.
arXiv Detail & Related papers (2025-05-28T17:57:47Z) - CodeIF: Benchmarking the Instruction-Following Capabilities of Large Language Models for Code Generation [20.013757490442064]
We introduce CodeIF, the first benchmark designed to assess the abilities of Large Language Models (LLMs) to adhere to task-oriented instructions.<n>CodeIF encompasses a broad range of tasks, including function synthesis, algorithmic instructions, and code explanation.<n>We conduct extensive experiments with LLMs, analyzing their strengths and limitations in meeting the demands of these tasks.
arXiv Detail & Related papers (2025-02-26T14:19:49Z) - SURGE: On the Potential of Large Language Models as General-Purpose Surrogate Code Executors [5.247363735860479]
Large language models (LLMs) have demonstrated remarkable capabilities in code-related tasks.<n>Given LLMs' ability to understand and process diverse programs, they present a promising direction for building general-purpose surrogate models.<n>We introduce SURGE, a benchmark with $1160$ problems covering $8$ key aspects.<n>Through empirical analysis of $21$ open-source and proprietary LLMs, we examine scaling laws, data efficiency, and predictive accuracy.
arXiv Detail & Related papers (2025-02-16T15:38:19Z) - A Comprehensive Survey of AI-Driven Advancements and Techniques in Automated Program Repair and Code Generation [0.0]
27 recent papers have been reviewed and split into two groups.
The first group consists of new methods for bug detection and repair, which include locating semantic errors.
The second group dwells on code generation, providing an overview of both general-purpose LLMs fine-tuned for programming and task-specific models.
It also presents methods to improve code generation, such as identifier-aware training, fine-tuning at the instruction level, and incorporating semantic code structures.
arXiv Detail & Related papers (2024-11-12T06:47:54Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
Large language models (LLMs) struggle with consistent and accurate reasoning.
LLMs are trained primarily on correct solutions, reducing their ability to detect and learn from errors.
We propose a novel collaborative method integrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for verification.
arXiv Detail & Related papers (2024-10-05T05:21:48Z) - RGD: Multi-LLM Based Agent Debugger via Refinement and Generation Guidance [0.6062751776009752]
Large Language Models (LLMs) have shown incredible potential in code generation tasks.
LLMs can generate code based on task descriptions, but accuracy remains limited.
We introduce a novel architecture of LLM-based agents for code generation and automatic debug: Refinement and Guidance debugger (RGD)
RGD decomposes the code generation task into multiple steps, ensuring a clearer workflow and enabling iterative code refinement based on self-reflection and feedback.
arXiv Detail & Related papers (2024-10-02T05:07:02Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
This research proposal aims to explore innovative solutions by focusing on the deployment of agents powered by Large Language Models (LLMs)
The iterative nature of agents, which allows for continuous learning and adaptation, can help surpass common challenges in code generation.
We aim to use the iterative feedback in these systems to further fine-tune the LLMs underlying the agents, becoming better aligned to the task of automated software improvement.
arXiv Detail & Related papers (2024-06-24T15:45:22Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
We investigate data quality for code and find that making the code more structured and readable leads to improved code generation performance of the system.
We build a novel data-cleaning pipeline that uses these principles to transform existing programs.
We evaluate our approach on two challenging algorithmic code generation benchmarks and find that fine-tuning CodeLLaMa-7B improves the performance by up to 30% compared to fine-tuning on the original dataset.
arXiv Detail & Related papers (2023-11-25T02:45:50Z) - Fixing Large Language Models' Specification Misunderstanding for Better Code Generation [13.494822086550604]
muFiX is a novel prompting technique to improve the code generation performance of large language models (LLMs)<n>It first exploits test case analysis to obtain specification understanding and enables a self-improvement process.<n>muFiX further fixes the specification understanding towards the direction reducing the gap between the provided understanding and the actual understanding.
arXiv Detail & Related papers (2023-09-28T02:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.