NeuroPAL: Punctuated Anytime Learning with Neuroevolution for Macromanagement in Starcraft: Brood War
- URL: http://arxiv.org/abs/2506.10384v1
- Date: Thu, 12 Jun 2025 06:19:27 GMT
- Title: NeuroPAL: Punctuated Anytime Learning with Neuroevolution for Macromanagement in Starcraft: Brood War
- Authors: Jim O'Connor, Yeonghun Lee, Gary B Parker,
- Abstract summary: We introduce NeuroPAL, a neuroevolutionary framework that integrates Neuroevolution of Augmenting Topologies (NEAT) with Punctuated Anytime Learning (PAL) to improve the efficiency of evolutionary training.<n>We evaluate NeuroPAL in a fixed-map, single-race scenario in StarCraft: Brood War and compare its performance to standard NEAT-based training.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: StarCraft: Brood War remains a challenging benchmark for artificial intelligence research, particularly in the domain of macromanagement, where long-term strategic planning is required. Traditional approaches to StarCraft AI rely on rule-based systems or supervised deep learning, both of which face limitations in adaptability and computational efficiency. In this work, we introduce NeuroPAL, a neuroevolutionary framework that integrates Neuroevolution of Augmenting Topologies (NEAT) with Punctuated Anytime Learning (PAL) to improve the efficiency of evolutionary training. By alternating between frequent, low-fidelity training and periodic, high-fidelity evaluations, PAL enhances the sample efficiency of NEAT, enabling agents to discover effective strategies in fewer training iterations. We evaluate NeuroPAL in a fixed-map, single-race scenario in StarCraft: Brood War and compare its performance to standard NEAT-based training. Our results show that PAL significantly accelerates the learning process, allowing the agent to reach competitive levels of play in approximately half the training time required by NEAT alone. Additionally, the evolved agents exhibit emergent behaviors such as proxy barracks placement and defensive building optimization, strategies commonly used by expert human players. These findings suggest that structured evaluation mechanisms like PAL can enhance the scalability and effectiveness of neuroevolution in complex real-time strategy environments.
Related papers
- AVA: Attentive VLM Agent for Mastering StarCraft II [56.07921367623274]
We introduce Attentive VLM Agent (AVA), a multimodal StarCraft II agent that aligns artificial agent perception with the human gameplay experience.<n>Our agent addresses this limitation by incorporating RGB visual inputs and natural language observations that more closely simulate human cognitive processes during gameplay.
arXiv Detail & Related papers (2025-03-07T12:54:25Z) - Mastering the Digital Art of War: Developing Intelligent Combat Simulation Agents for Wargaming Using Hierarchical Reinforcement Learning [0.0]
dissertation proposes a comprehensive approach, including targeted observation abstractions, multi-model integration, a hybrid AI framework, and an overarching hierarchical reinforcement learning framework.
Our localized observation abstraction using piecewise linear spatial decay simplifies the RL problem, enhancing computational efficiency and demonstrating superior efficacy over traditional global observation methods.
Our hybrid AI framework synergizes RL with scripted agents, leveraging RL for high-level decisions and scripted agents for lower-level tasks, enhancing adaptability, reliability, and performance.
arXiv Detail & Related papers (2024-08-23T18:50:57Z) - Online Pseudo-Zeroth-Order Training of Neuromorphic Spiking Neural Networks [69.2642802272367]
Brain-inspired neuromorphic computing with spiking neural networks (SNNs) is a promising energy-efficient computational approach.
Most recent methods leverage spatial and temporal backpropagation (BP), not adhering to neuromorphic properties.
We propose a novel method, online pseudo-zeroth-order (OPZO) training.
arXiv Detail & Related papers (2024-07-17T12:09:00Z) - SwarmBrain: Embodied agent for real-time strategy game StarCraft II via
large language models [1.235958663217432]
The purpose of this paper is to investigate the efficacy of large language models (LLMs) in executing real-time strategy war tasks.
We introduce SwarmBrain, an embodied agent leveraging LLM for real-time strategy implementation in the StarCraft II game environment.
Experimental results show the capacity of SwarmBrain to conduct economic augmentation, territorial expansion, and tactical formulation.
arXiv Detail & Related papers (2024-01-31T11:14:29Z) - A Reinforcement Learning-assisted Genetic Programming Algorithm for Team
Formation Problem Considering Person-Job Matching [70.28786574064694]
A reinforcement learning-assisted genetic programming algorithm (RL-GP) is proposed to enhance the quality of solutions.
The hyper-heuristic rules obtained through efficient learning can be utilized as decision-making aids when forming project teams.
arXiv Detail & Related papers (2023-04-08T14:32:12Z) - Efficient Deep Reinforcement Learning with Predictive Processing
Proximal Policy Optimization [3.0217238755526057]
We show that recurrent neural networks which predict their own sensory states can be leveraged to minimise surprise.
We present the Predictive Processing Proximal Policy Optimization (P4O) agent.
It applies predictive processing to a recurrent variant of the PPO algorithm by integrating a world model in its hidden state.
arXiv Detail & Related papers (2022-11-11T14:30:59Z) - Enhancing Adversarial Training with Feature Separability [52.39305978984573]
We introduce a new concept of adversarial training graph (ATG) with which the proposed adversarial training with feature separability (ATFS) enables to boost the intra-class feature similarity and increase inter-class feature variance.
Through comprehensive experiments, we demonstrate that the proposed ATFS framework significantly improves both clean and robust performance.
arXiv Detail & Related papers (2022-05-02T04:04:23Z) - LAS-AT: Adversarial Training with Learnable Attack Strategy [82.88724890186094]
"Learnable attack strategy", dubbed LAS-AT, learns to automatically produce attack strategies to improve the model robustness.
Our framework is composed of a target network that uses AEs for training to improve robustness and a strategy network that produces attack strategies to control the AE generation.
arXiv Detail & Related papers (2022-03-13T10:21:26Z) - Towards Scaling Difference Target Propagation by Learning Backprop
Targets [64.90165892557776]
Difference Target Propagation is a biologically-plausible learning algorithm with close relation with Gauss-Newton (GN) optimization.
We propose a novel feedback weight training scheme that ensures both that DTP approximates BP and that layer-wise feedback weight training can be restored.
We report the best performance ever achieved by DTP on CIFAR-10 and ImageNet.
arXiv Detail & Related papers (2022-01-31T18:20:43Z) - Autonomous Reinforcement Learning: Formalism and Benchmarking [106.25788536376007]
Real-world embodied learning, such as that performed by humans and animals, is situated in a continual, non-episodic world.
Common benchmark tasks in RL are episodic, with the environment resetting between trials to provide the agent with multiple attempts.
This discrepancy presents a major challenge when attempting to take RL algorithms developed for episodic simulated environments and run them on real-world platforms.
arXiv Detail & Related papers (2021-12-17T16:28:06Z) - An Efficient Application of Neuroevolution for Competitive Multiagent
Learning [0.0]
NEAT is a popular evolutionary strategy used to obtain the best performing neural network architecture.
This paper utilizes the NEAT algorithm to achieve competitive multiagent learning on a modified pong game environment.
arXiv Detail & Related papers (2021-05-23T10:34:48Z) - Regularized Evolutionary Population-Based Training [11.624954122221562]
This paper presents an algorithm called Population-Based Training (EPBT) that interleaves the training of a DNN's weights with the metalearning of loss functions.
EPBT results in faster, more accurate learning on image classification benchmarks.
arXiv Detail & Related papers (2020-02-11T06:28:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.