High-resolution efficient image generation from WiFi CSI using a pretrained latent diffusion model
- URL: http://arxiv.org/abs/2506.10605v2
- Date: Fri, 04 Jul 2025 12:27:28 GMT
- Title: High-resolution efficient image generation from WiFi CSI using a pretrained latent diffusion model
- Authors: Eshan Ramesh, Takayuki Nishio,
- Abstract summary: We present LatentCSI, a novel method for generating images of the physical environment from WiFi CSI measurements.<n>Our method employs a lightweight neural network to map CSI amplitudes directly into the latent space of an LDM.<n>We then apply the LDM's denoising diffusion model to the latent representation with text-based guidance before decoding.
- Score: 2.847466645223566
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present LatentCSI, a novel method for generating images of the physical environment from WiFi CSI measurements that leverages a pretrained latent diffusion model (LDM). Unlike prior approaches that rely on complex and computationally intensive techniques such as GANs, our method employs a lightweight neural network to map CSI amplitudes directly into the latent space of an LDM. We then apply the LDM's denoising diffusion model to the latent representation with text-based guidance before decoding using the LDM's pretrained decoder to obtain a high-resolution image. This design bypasses the challenges of pixel-space image generation and avoids the explicit image encoding stage typically required in conventional image-to-image pipelines, enabling efficient and high-quality image synthesis. We validate our approach on two datasets: a wide-band CSI dataset we collected with off-the-shelf WiFi devices and cameras; and a subset of the publicly available MM-Fi dataset. The results demonstrate that LatentCSI outperforms baselines of comparable complexity trained directly on ground-truth images in both computational efficiency and perceptual quality, while additionally providing practical advantages through its unique capacity for text-guided controllability.
Related papers
- SING: Semantic Image Communications using Null-Space and INN-Guided Diffusion Models [52.40011613324083]
Joint source-channel coding systems (DeepJSCC) have recently demonstrated remarkable performance in wireless image transmission.<n>Existing methods focus on minimizing distortion between the transmitted image and the reconstructed version at the receiver, often overlooking perceptual quality.<n>We propose SING, a novel framework that formulates the recovery of high-quality images from corrupted reconstructions as an inverse problem.
arXiv Detail & Related papers (2025-03-16T12:32:11Z) - Exploring Representation-Aligned Latent Space for Better Generation [86.45670422239317]
We introduce ReaLS, which integrates semantic priors to improve generation performance.<n>We show that fundamental DiT and SiT trained on ReaLS can achieve a 15% improvement in FID metric.<n>The enhanced semantic latent space enables more perceptual downstream tasks, such as segmentation and depth estimation.
arXiv Detail & Related papers (2025-02-01T07:42:12Z) - HFI: A unified framework for training-free detection and implicit watermarking of latent diffusion model generated images [32.4045133529788]
Current AI-generated image detection methods assume the availability of real/AI-generated images for training.<n>We propose HFI, which measures the extent of aliasing, a distortion of high-frequency information.<n>We show that HFI can successfully detect the images generated from the specified LDM as a means of implicit watermarking.
arXiv Detail & Related papers (2024-12-30T04:34:42Z) - Timestep-Aware Diffusion Model for Extreme Image Rescaling [47.89362819768323]
We propose a novel framework called Timestep-Aware Diffusion Model (TADM) for extreme image rescaling.<n>TADM performs rescaling operations in the latent space of a pre-trained autoencoder.<n>It effectively leverages powerful natural image priors learned by a pre-trained text-to-image diffusion model.
arXiv Detail & Related papers (2024-08-17T09:51:42Z) - Exploring Distortion Prior with Latent Diffusion Models for Remote Sensing Image Compression [9.742764207747697]
We propose a latent diffusion model-based remote sensing image compression (LDM-RSIC) method.
In the first stage, a self-encoder learns prior from the high-quality input image.
In the second stage, the prior is generated through an LDM conditioned on the decoded image of an existing learning-based image compression algorithm.
arXiv Detail & Related papers (2024-06-06T11:13:44Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - LD-GAN: Low-Dimensional Generative Adversarial Network for Spectral
Image Generation with Variance Regularization [72.4394510913927]
Deep learning methods are state-of-the-art for spectral image (SI) computational tasks.
GANs enable diverse augmentation by learning and sampling from the data distribution.
GAN-based SI generation is challenging since the high-dimensionality nature of this kind of data hinders the convergence of the GAN training yielding to suboptimal generation.
We propose a statistical regularization to control the low-dimensional representation variance for the autoencoder training and to achieve high diversity of samples generated with the GAN.
arXiv Detail & Related papers (2023-04-29T00:25:02Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - DELAD: Deep Landweber-guided deconvolution with Hessian and sparse prior [0.22940141855172028]
We present a model for non-blind image deconvolution that incorporates the classic iterative method into a deep learning application.
We build our network based on the iterative Landweber deconvolution algorithm, which is integrated with trainable convolutional layers to enhance the recovered image structures and details.
arXiv Detail & Related papers (2022-09-30T11:15:03Z) - LWGNet: Learned Wirtinger Gradients for Fourier Ptychographic Phase
Retrieval [14.588976801396576]
We propose a hybrid model-driven residual network that combines the knowledge of the forward imaging system with a deep data-driven network.
Unlike other conventional unrolling techniques, LWGNet uses fewer stages while performing at par or even better than existing traditional and deep learning techniques.
This improvement in performance for low-bit depth and low-cost sensors has the potential to bring down the cost of FPM imaging setup significantly.
arXiv Detail & Related papers (2022-08-08T17:22:54Z) - Semantic Image Synthesis via Diffusion Models [174.24523061460704]
Denoising Diffusion Probabilistic Models (DDPMs) have achieved remarkable success in various image generation tasks.<n>Recent work on semantic image synthesis mainly follows the de facto GAN-based approaches.<n>We propose a novel framework based on DDPM for semantic image synthesis.
arXiv Detail & Related papers (2022-06-30T18:31:51Z) - High-Resolution Image Synthesis with Latent Diffusion Models [14.786952412297808]
Training diffusion models on autoencoders allows for the first time to reach a near-optimal point between complexity reduction and detail preservation.
Our latent diffusion models (LDMs) achieve a new state of the art for image inpainting and highly competitive performance on various tasks.
arXiv Detail & Related papers (2021-12-20T18:55:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.