Data Driven Diagnosis for Large Cyber-Physical-Systems with Minimal Prior Information
- URL: http://arxiv.org/abs/2506.10613v1
- Date: Thu, 12 Jun 2025 11:56:58 GMT
- Title: Data Driven Diagnosis for Large Cyber-Physical-Systems with Minimal Prior Information
- Authors: Henrik Sebastian Steude, Alexander Diedrich, Ingo Pill, Lukas Moddemann, Daniel Vranješ, Oliver Niggemann,
- Abstract summary: We present a new diagnostic approach that operates with minimal prior knowledge.<n>Our method combines a neural network-based symptom generator, which employs subsystem-level anomaly detection, with a new graph diagnosis algorithm.<n>Our results thus highlight our approach's potential for practical applications with large and complex cyber-physical systems.
- Score: 40.827236517095514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diagnostic processes for complex cyber-physical systems often require extensive prior knowledge in the form of detailed system models or comprehensive training data. However, obtaining such information poses a significant challenge. To address this issue, we present a new diagnostic approach that operates with minimal prior knowledge, requiring only a basic understanding of subsystem relationships and data from nominal operations. Our method combines a neural network-based symptom generator, which employs subsystem-level anomaly detection, with a new graph diagnosis algorithm that leverages minimal causal relationship information between subsystems-information that is typically available in practice. Our experiments with fully controllable simulated datasets show that our method includes the true causal component in its diagnosis set for 82 p.c. of all cases while effectively reducing the search space in 73 p.c. of the scenarios. Additional tests on the real-world Secure Water Treatment dataset showcase the approach's potential for practical scenarios. Our results thus highlight our approach's potential for practical applications with large and complex cyber-physical systems where limited prior knowledge is available.
Related papers
- Integrating LLMs for Explainable Fault Diagnosis in Complex Systems [0.0]
This paper introduces an integrated system designed to enhance the explainability of fault diagnostics in complex systems, such as nuclear power plants.
By combining a physics-based diagnostic tool with a Large Language Model, we offer a novel solution that not only identifies faults but also provides clear, understandable explanations of their causes and implications.
arXiv Detail & Related papers (2024-02-08T22:11:21Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - Learning From High-Dimensional Cyber-Physical Data Streams for
Diagnosing Faults in Smart Grids [4.616703548353371]
Fault diagnosis in cyber-physical power systems is affected by data quality.
These systems generate massive amounts of data that overburden the system with excessive computational costs.
This paper presents the effect of feature engineering on mitigating the aforementioned challenges.
arXiv Detail & Related papers (2023-03-15T01:21:50Z) - Machine learning-based approach for online fault Diagnosis of Discrete
Event System [0.0]
The problem is the online diagnosis of Automated Production Systems with sensors and actuators delivering discrete binary signals.
We propose a Machine Learning-based approach of a diagnostic system.
arXiv Detail & Related papers (2022-10-24T08:56:13Z) - NeuralSympCheck: A Symptom Checking and Disease Diagnostic Neural Model
with Logic Regularization [59.15047491202254]
symptom checking systems inquire users for their symptoms and perform a rapid and affordable medical assessment of their condition.
We propose a new approach based on the supervised learning of neural models with logic regularization.
Our experiments show that the proposed approach outperforms the best existing methods in the accuracy of diagnosis when the number of diagnoses and symptoms is large.
arXiv Detail & Related papers (2022-06-02T07:57:17Z) - A Novel TSK Fuzzy System Incorporating Multi-view Collaborative Transfer
Learning for Personalized Epileptic EEG Detection [20.11589208667256]
We propose a TSK fuzzy system-based epilepsy detection algorithm that integrates multi-view collaborative transfer learning.
The proposed method has the potential to detect epileptic EEG signals effectively.
arXiv Detail & Related papers (2021-11-11T12:15:55Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Hierarchical Reinforcement Learning for Automatic Disease Diagnosis [52.111516253474285]
We propose to integrate a hierarchical policy structure of two levels into the dialogue systemfor policy learning.
The proposed policy structure is capable to deal with diagnosis problem including large number of diseases and symptoms.
arXiv Detail & Related papers (2020-04-29T15:02:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.