Integrating LLMs for Explainable Fault Diagnosis in Complex Systems
- URL: http://arxiv.org/abs/2402.06695v1
- Date: Thu, 8 Feb 2024 22:11:21 GMT
- Title: Integrating LLMs for Explainable Fault Diagnosis in Complex Systems
- Authors: Akshay J. Dave, Tat Nghia Nguyen, Richard B. Vilim
- Abstract summary: This paper introduces an integrated system designed to enhance the explainability of fault diagnostics in complex systems, such as nuclear power plants.
By combining a physics-based diagnostic tool with a Large Language Model, we offer a novel solution that not only identifies faults but also provides clear, understandable explanations of their causes and implications.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces an integrated system designed to enhance the
explainability of fault diagnostics in complex systems, such as nuclear power
plants, where operator understanding is critical for informed decision-making.
By combining a physics-based diagnostic tool with a Large Language Model, we
offer a novel solution that not only identifies faults but also provides clear,
understandable explanations of their causes and implications. The system's
efficacy is demonstrated through application to a molten salt facility,
showcasing its ability to elucidate the connections between diagnosed faults
and sensor data, answer operator queries, and evaluate historical sensor
anomalies. Our approach underscores the importance of merging model-based
diagnostics with advanced AI to improve the reliability and transparency of
autonomous systems.
Related papers
- Fault Diagnosis in Power Grids with Large Language Model [0.0]
This paper proposes a novel approach that leverages Large Language Models (LLMs) to enhance fault diagnosis accuracy and explainability.
We designed comprehensive, context-aware prompts to guide the LLMs in interpreting complex data.
Experimental results demonstrate significant improvements in diagnostic accuracy, explainability quality, response coherence, and contextual understanding.
arXiv Detail & Related papers (2024-07-11T19:44:18Z) - Multimodal Super-Resolution: Discovering hidden physics and its application to fusion plasmas [4.606409469837236]
A non-linear system governed by multi-spatial and multi-temporal physics scales cannot be fully understood with a single diagnostic.
We introduce a machine learning methodology to address this issue.
We use other diagnostics to produce super-resolution data, capturing detailed structural evolution and responses to perturbations previously unobservable.
arXiv Detail & Related papers (2024-05-09T17:06:51Z) - A Sparse Bayesian Learning for Diagnosis of Nonstationary and Spatially
Correlated Faults with Application to Multistation Assembly Systems [3.4991031406102238]
This article proposes a novel fault diagnosis method: clustering spatially correlated sparse Bayesian learning (CSSBL)
The proposed method's efficacy is provided through numerical and real-world case studies utilizing an actual autobody assembly system.
The generalizability of the proposed method allows the technique to be applied in fault diagnosis in other domains, including communication and healthcare systems.
arXiv Detail & Related papers (2023-10-20T23:56:53Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - Machine learning-based approach for online fault Diagnosis of Discrete
Event System [0.0]
The problem is the online diagnosis of Automated Production Systems with sensors and actuators delivering discrete binary signals.
We propose a Machine Learning-based approach of a diagnostic system.
arXiv Detail & Related papers (2022-10-24T08:56:13Z) - An Ontology for Defect Detection in Metal Additive Manufacturing [3.997680012976965]
Key for Industry 4.0 applications is to develop control systems capable of addressing data integration and semantic interoperability issues.
We provide the classification of process-induced defects known from the metal additive manufacturing literature.
Our knowledge base aims at enhancing the capabilities of additive manufacturing by adding further defect analysis terminology.
arXiv Detail & Related papers (2022-09-29T13:35:25Z) - System Resilience through Health Monitoring and Reconfiguration [56.448036299746285]
We demonstrate an end-to-end framework to improve the resilience of man-made systems to unforeseen events.
The framework is based on a physics-based digital twin model and three modules tasked with real-time fault diagnosis, prognostics and reconfiguration.
arXiv Detail & Related papers (2022-08-30T20:16:17Z) - On-board Fault Diagnosis of a Laboratory Mini SR-30 Gas Turbine Engine [54.650189434544146]
A data-driven fault diagnosis and isolation scheme is explicitly developed for failure in the fuel supply system and sensor measurements.
A model is trained using machine learning classifiers to detect a given set of fault scenarios in real-time on which it is trained.
Several simulation studies were carried out to demonstrate and illustrate the proposed fault diagnosis scheme's advantages, capabilities, and performance.
arXiv Detail & Related papers (2021-10-17T13:42:37Z) - Anytime Diagnosis for Reconfiguration [52.77024349608834]
We introduce and analyze FlexDiag which is an anytime direct diagnosis approach.
We evaluate the algorithm with regard to performance and diagnosis quality using a configuration benchmark from the domain of feature models and an industrial configuration knowledge base from the automotive domain.
arXiv Detail & Related papers (2021-02-19T11:45:52Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Hierarchical Reinforcement Learning for Automatic Disease Diagnosis [52.111516253474285]
We propose to integrate a hierarchical policy structure of two levels into the dialogue systemfor policy learning.
The proposed policy structure is capable to deal with diagnosis problem including large number of diseases and symptoms.
arXiv Detail & Related papers (2020-04-29T15:02:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.