Modality-AGnostic Image Cascade (MAGIC) for Multi-Modality Cardiac Substructure Segmentation
- URL: http://arxiv.org/abs/2506.10797v1
- Date: Thu, 12 Jun 2025 15:10:24 GMT
- Title: Modality-AGnostic Image Cascade (MAGIC) for Multi-Modality Cardiac Substructure Segmentation
- Authors: Nicholas Summerfield, Qisheng He, Alex Kuo, Ahmed I. Ghanem, Simeng Zhu, Chase Ruff, Joshua Pan, Anudeep Kumar, Prashant Nagpal, Jiwei Zhao, Ming Dong, Carri K. Glide-Hurst,
- Abstract summary: This work introduces and validates a Modality-AGnostic Image Cascade (MAGIC) for comprehensive and multi-modal cardiac substructure segmentation.<n>MAGIC is implemented through replicated encoding and decoding branches of an nnU-Net-based, U-shaped backbone.
- Score: 4.2354517141466275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cardiac substructures are essential in thoracic radiation therapy planning to minimize risk of radiation-induced heart disease. Deep learning (DL) offers efficient methods to reduce contouring burden but lacks generalizability across different modalities and overlapping structures. This work introduces and validates a Modality-AGnostic Image Cascade (MAGIC) for comprehensive and multi-modal cardiac substructure segmentation. MAGIC is implemented through replicated encoding and decoding branches of an nnU-Net-based, U-shaped backbone conserving the function of a single model. Twenty cardiac substructures (heart, chambers, great vessels (GVs), valves, coronary arteries (CAs), and conduction nodes) from simulation CT (Sim-CT), low-field MR-Linac, and cardiac CT angiography (CCTA) modalities were manually delineated and used to train (n=76), validate (n=15), and test (n=30) MAGIC. Twelve comparison models (four segmentation subgroups across three modalities) were equivalently trained. All methods were compared for training efficiency and against reference contours using the Dice Similarity Coefficient (DSC) and two-tailed Wilcoxon Signed-Rank test (threshold, p<0.05). Average DSC scores were 0.75(0.16) for Sim-CT, 0.68(0.21) for MR-Linac, and 0.80(0.16) for CCTA. MAGIC outperforms the comparison in 57% of cases, with limited statistical differences. MAGIC offers an effective and accurate segmentation solution that is lightweight and capable of segmenting multiple modalities and overlapping structures in a single model. MAGIC further enables clinical implementation by simplifying the computational requirements and offering unparalleled flexibility for clinical settings.
Related papers
- Explainable Parallel CNN-LSTM Model for Differentiating Ventricular Tachycardia from Supraventricular Tachycardia with Aberrancy in 12-Lead ECGs [4.263117296632119]
We propose a computationally efficient deep learning solution to improve diagnostic accuracy and provide model interpretability for clinical deployment.<n>A novel lightweight parallel deep architecture is introduced. Each pipeline processes individual ECG leads using two 1D-CNN blocks to extract local features.<n>The model achieved $95.63%$ accuracy ($95%$ CI: $93.07-98.19%$), with sensitivity=$95.10%$, specificity=$96.06%$, and F1-score=$95.12%$.
arXiv Detail & Related papers (2025-07-14T12:12:34Z) - Multi-Stage Segmentation and Cascade Classification Methods for Improving Cardiac MRI Analysis [15.236546465767026]
We introduce a novel deep learning-based approach to segmentation and classification of cardiac magnetic resonance images.<n>The method improved segmentation accuracy, achieving a Dice coefficient of 0.974 for the left ventricle and 0.947 for the right ventricle.<n>For classification, a cascade of deep learning classifiers was employed to distinguish heart conditions, including hypertrophic cardiomyopathy, myocardial infarction, and dilated cardiomyopathy.
arXiv Detail & Related papers (2024-12-12T15:53:14Z) - KaLDeX: Kalman Filter based Linear Deformable Cross Attention for Retina Vessel Segmentation [46.57880203321858]
We propose a novel network (KaLDeX) for vascular segmentation leveraging a Kalman filter based linear deformable cross attention (LDCA) module.
Our approach is based on two key components: Kalman filter (KF) based linear deformable convolution (LD) and cross-attention (CA) modules.
The proposed method is evaluated on retinal fundus image datasets (DRIVE, CHASE_BD1, and STARE) as well as the 3mm and 6mm of the OCTA-500 dataset.
arXiv Detail & Related papers (2024-10-28T16:00:42Z) - Deep Learning Framework with Multi-Head Dilated Encoders for Enhanced
Segmentation of Cervical Cancer on Multiparametric Magnetic Resonance Imaging [0.6597195879147557]
T2-weighted magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) are essential components for cervical cancer diagnosis.
We propose a novel multi-head framework that uses dilated convolutions and shared residual connections for separate encoding of multiparametric MRI images.
arXiv Detail & Related papers (2023-06-19T19:41:21Z) - Three-dimensional micro-structurally informed in silico myocardium --
towards virtual imaging trials in cardiac diffusion weighted MRI [58.484353709077034]
We propose a novel method to generate a realistic numerical phantom of myocardial microstructure.
In-silico tissue models enable evaluating quantitative models of magnetic resonance imaging.
arXiv Detail & Related papers (2022-08-22T22:01:44Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Segmentation of Cardiac Structures via Successive Subspace Learning with
Saab Transform from Cine MRI [29.894633364282555]
We propose a machine learning model, successive subspace learning with the subspace approximation with adjusted bias (Saab) transform, for accurate and efficient segmentation from cine MRI.
Our framework performed better than state-of-the-art U-Net models with 200$times$ fewer parameters in the left ventricle, right ventricle, and myocardium.
arXiv Detail & Related papers (2021-07-22T14:50:48Z) - Multi-class probabilistic atlas-based whole heart segmentation method in
cardiac CT and MRI [4.144197343838299]
This article proposes a framework for multi-class whole heart segmentation employing non-rigid registration-based probabilistic atlas.
We also propose a non-rigid registration pipeline utilizing a multi-resolution strategy for obtaining the highest attainable mutual information.
The proposed approach exhibits an encouraging achievement, yielding a mean volume overlapping error of 14.5 % for CT scans.
arXiv Detail & Related papers (2021-02-03T01:02:09Z) - COVID-MTL: Multitask Learning with Shift3D and Random-weighted Loss for
Automated Diagnosis and Severity Assessment of COVID-19 [39.57518533765393]
There is an urgent need for automated methods to assist accurate and effective assessment of COVID-19.
We present an end-to-end multitask learning framework (COVID-MTL) that is capable of automated and simultaneous detection (against both radiology and NAT) and severity assessment of COVID-19.
arXiv Detail & Related papers (2020-12-10T08:30:46Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - CondenseUNet: A Memory-Efficient Condensely-Connected Architecture for
Bi-ventricular Blood Pool and Myocardium Segmentation [0.0]
We propose a novel memory-efficient Convolutional Neural Network (CNN) architecture as a modification of both CondenseNet and DenseNet.
Our experiments show that the proposed architecture runs on the Automated Cardiac Diagnosis Challenge dataset.
arXiv Detail & Related papers (2020-04-05T16:34:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.