論文の概要: A multi-scale loss formulation for learning a probabilistic model with proper score optimisation
- arxiv url: http://arxiv.org/abs/2506.10868v1
- Date: Thu, 12 Jun 2025 16:30:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 15:37:22.836071
- Title: A multi-scale loss formulation for learning a probabilistic model with proper score optimisation
- Title(参考訳): 適切なスコア最適化による確率モデル学習のためのマルチスケール損失定式化
- Authors: Simon Lang, Martin Leutbecher, Pedro Maciel,
- Abstract要約: 欧州中距離気象予報センター(ECMWF)で開発された機械学習型気象予報モデルであるAIFS-CRPSでマルチスケール損失が試験された。
マルチスケールの損失は、予測スキルに悪影響を及ぼすことなく、小さなスケールの変動性をよりよく制約する。
これにより、スケールアウェアモデルトレーニングにおける将来の作業への有望な方向性が開かれます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We assess the impact of a multi-scale loss formulation for training probabilistic machine-learned weather forecasting models. The multi-scale loss is tested in AIFS-CRPS, a machine-learned weather forecasting model developed at the European Centre for Medium-Range Weather Forecasts (ECMWF). AIFS-CRPS is trained by directly optimising the almost fair continuous ranked probability score (afCRPS). The multi-scale loss better constrains small scale variability without negatively impacting forecast skill. This opens up promising directions for future work in scale-aware model training.
- Abstract(参考訳): 確率論的機械学習型天気予報モデルの訓練におけるマルチスケール損失定式化の効果を評価する。
マルチスケールの損失は、欧州中距離気象予報センター(ECMWF)で開発された機械学習による天気予報モデルであるAIFS-CRPSでテストされている。
AIFS-CRPSは、ほぼ公正な連続的な確率スコア(afCRPS)を直接最適化することで訓練される。
マルチスケールの損失は、予測スキルに悪影響を及ぼすことなく、小さなスケールの変動性をよりよく制約する。
これにより、スケールアウェアモデルトレーニングにおける将来の作業への有望な方向性が開かれます。
関連論文リスト
- Enforcing tail calibration when training probabilistic forecast models [0.0]
本研究では,確率予測モデルの学習に使用する損失関数を用いて,極端な事象に対する予測の信頼性を向上させる方法について検討する。
我々は,最先端モデルが極端風速のキャリブレーション予測を発行しないことを示すとともに,モデルトレーニング中の損失関数への適切な適応により,極端事象のキャリブレーションを改善することができることを示した。
論文 参考訳(メタデータ) (2025-06-16T16:51:06Z) - Skillful joint probabilistic weather forecasting from marginals [11.348323146521931]
本稿では,FGNを提案する。FGNはシンプルでスケーラブルでフレキシブルなモデリング手法で,現在の最先端モデルよりも優れている。
位置ごとの予測の連続ランク確率スコア(CRPS)を最小化するために、直接訓練される。
決定論的および確率論的指標によって測定される、最先端のアンサンブル予測を生成する。
論文 参考訳(メタデータ) (2025-06-12T14:50:47Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFTは、モデルのパラメータの大部分を凍結し、新しく導入されたプロンプトとアダプタの調整に集中する微調整戦略である。
実験の結果,Forecast-PEFTは動作予測タスクにおいて従来のフルチューニング手法よりも優れていた。
Forecast-FTは予測性能をさらに改善し、従来のベースライン法よりも最大9.6%向上した。
論文 参考訳(メタデータ) (2024-07-28T19:18:59Z) - Improving probabilistic forecasts of extreme wind speeds by training statistical post-processing models with weighted scoring rules [0.0]
閾値重み付き連続ランク確率スコア(twCRPS)を用いたトレーニングは、後処理モデルの極端なイベント性能を向上させる。
極端事象の確率論的予測の性能が向上し,分布物体の予測性能が低下する分布体テールトレードオフが発見された。
論文 参考訳(メタデータ) (2024-07-22T11:07:52Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Pre-trained Model Guided Fine-Tuning for Zero-Shot Adversarial Robustness [52.9493817508055]
我々は,モデルがゼロショットの逆方向のロバスト性を高めるために,事前訓練されたモデル誘導逆方向の微調整(PMG-AFT)を提案する。
私たちのアプローチは、平均8.72%のクリーンな精度を継続的に改善します。
論文 参考訳(メタデータ) (2024-01-09T04:33:03Z) - Performative Time-Series Forecasting [64.03865043422597]
我々は,機械学習の観点から,パフォーマンス時系列予測(PeTS)を定式化する。
本稿では,予測分布シフトに対する遅延応答の概念を活用する新しい手法であるFeature Performative-Shifting(FPS)を提案する。
新型コロナウイルスの複数の時系列モデルと交通予報タスクを用いた総合的な実験を行った。
論文 参考訳(メタデータ) (2023-10-09T18:34:29Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
本稿では,大規模事前学習モデルを用いて,サンプル難易度を考慮したエントロピー正規化による下流モデルトレーニングを指導する。
我々は、挑戦的なベンチマークで精度と不確実性の校正を同時に改善する。
論文 参考訳(メタデータ) (2023-04-20T07:29:23Z) - Evaluating Probabilistic Classifiers: The Triptych [62.997667081978825]
本稿では,予測性能の異なる相補的な側面に焦点をあてた診断グラフィックのトリチチを提案し,研究する。
信頼性図は校正に対処し、受信動作特性(ROC)曲線は識別能力を診断し、マーフィー図は全体的な予測性能と価値を視覚化する。
論文 参考訳(メタデータ) (2023-01-25T19:35:23Z) - Machine learning for total cloud cover prediction [0.0]
本稿では,多層パーセプトロン(MLP)ニューラルネットワーク,勾配促進機(GBM)およびランダムフォレスト(RF)法を用いた後処理の性能について検討する。
生のアンサンブルと比較して、全ての校正法は予測スキルを著しく向上させる。
RFモデルは予測性能が最小となる一方、POLRとGBMのアプローチは最良である。
論文 参考訳(メタデータ) (2020-01-16T17:13:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。