A cavity array microscope for parallel single-atom interfacing
- URL: http://arxiv.org/abs/2506.10919v1
- Date: Thu, 12 Jun 2025 17:32:55 GMT
- Title: A cavity array microscope for parallel single-atom interfacing
- Authors: Adam L. Shaw, Anna Soper, Danial Shadmany, Aishwarya Kumar, Lukas Palm, Da-Yeon Koh, Vassilios Kaxiras, Lavanya Taneja, Matt Jaffe, David I. Schuster, Jonathan Simon,
- Abstract summary: We introduce the cavity array microscope, an experimental platform where each individual atom is strongly coupled to its own individual cavity.<n>We achieve homogeneous atom-cavity coupling, and show fast, non-destructive, parallel readout on millisecond timescales.<n>Our work unlocks the regime of many-cavity QED, and opens an unexplored frontier of large-scale quantum networking with atom arrays.
- Score: 0.15239947016578353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neutral atom arrays and optical cavity QED systems have developed in parallel as central pillars of modern experimental quantum science. While each platform has demonstrated exceptional capabilities-such as high-fidelity quantum logic in atom arrays, and strong light-matter coupling in cavities-their combination holds promise for realizing fast and non-destructive atom measurement, building large-scale quantum networks, and engineering hybrid atom-photon Hamiltonians. However, to date, experiments integrating the two platforms have been limited to interfacing the entire atom array with one global cavity mode, a configuration that constrains addressability, parallelism, and scalability. Here we introduce the cavity array microscope, an experimental platform where each individual atom is strongly coupled to its own individual cavity across a two-dimensional array of over 40 modes. Our approach requires no nanophotonic elements, and instead uses a new free-space cavity geometry with intra-cavity lenses to realize above-unity peak cooperativity with micron-scale mode waists and spacings, compatible with typical atom array length scales while keeping atoms far from dielectric surfaces. We achieve homogeneous atom-cavity coupling, and show fast, non-destructive, parallel readout on millisecond timescales, including cavity-resolved readout into a fiber array as a proof-of-principle for future networking applications. This platform is species-agnostic and scalable, and we expect key metrics to further improve in a next-generation realization anticipated to be compatible with glass-cell-based experiments. Our work unlocks, for the first time, the regime of many-cavity QED, and opens an unexplored frontier of large-scale quantum networking with atom arrays.
Related papers
- Multi-Photon Quantum Rabi Models with Center-of-Mass Motion [45.73541813564926]
We introduce a rigorous, second-quantized framework for describing multi-$Lambda$-atoms in a cavity.<n>A key feature of our approach is the systematic application of a Hamiltonian averaging theory to the atomic field operators.<n>A significant finding is the emergence of a particle-particle interaction mediated by ancillary states.
arXiv Detail & Related papers (2025-07-07T09:50:48Z) - Cavity Quantum Electrodynamics with Atom Arrays in Free Space [0.3277163122167433]
Cavity quantum electrodynamics (cavity QED) enables the control of light-matter interactions at the single-photon level.
We propose a cavity QED architecture based on atoms trapped in free space.
We show that a pair of two-dimensional, ordered arrays of atoms can be described by conventional cavity QED parameters.
arXiv Detail & Related papers (2024-09-23T18:01:27Z) - Strong interactions between integrated microresonators and alkali atomic vapors: towards single-atom, single-photon operation [2.7170666557133454]
Single photon operation is required for quantum gates and sources.
Cold atoms, quantum dots, and color centers in crystals are amongst the systems that have shown single photon operations.
A solution to this issue can be found in nanophotonic cavities, where light-matter interaction is enhanced and the volume of operation is small.
arXiv Detail & Related papers (2024-04-05T19:33:33Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
We show that the cQDO model lends itself naturally to simulation on a photonic quantum computer.
We calculate the binding energy curve of diatomic systems by leveraging Xanadu's Strawberry Fields photonics library.
Remarkably, we find that two coupled bosonic QDOs exhibit a stable bond.
arXiv Detail & Related papers (2023-06-14T14:44:12Z) - A Quantum Repeater Platform based on Single SiV$^-$ Centers in Diamond
with Cavity-Assisted, All-Optical Spin Access and Fast Coherent Driving [45.82374977939355]
Quantum key distribution enables secure communication based on the principles of quantum mechanics.
Quantum repeaters are required to establish large-scale quantum networks.
We present an efficient spin-photon interface for quantum repeaters.
arXiv Detail & Related papers (2022-10-28T14:33:24Z) - Functional building blocks for scalable multipartite entanglement in
optical lattices [7.362583014963337]
We develop a new architecture for implementing layers of quantum gates over moderately-separated atoms incorporated with a quantum gas microscope for single-atom manipulation.
We created and verified functional building blocks for scalable multipartite entanglement by connecting Bell pairs to one-dimensional 10-atom chains and two-dimensional plaquettes of $2times4$ atoms.
arXiv Detail & Related papers (2022-10-06T14:06:46Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - A dual-element, two-dimensional atom array with continuous-mode
operation [0.3262230127283452]
We introduce a dual-element atom array with individual control of single rubidium and cesium atoms.
Our results enable avenues for ancilla-assisted quantum protocols such as quantum non-demolition measurements and quantum error correction.
arXiv Detail & Related papers (2021-10-11T18:00:17Z) - Multidimensional cluster states using a single spin-photon interface
coupled strongly to an intrinsic nuclear register [48.7576911714538]
Photonic cluster states are a powerful resource for measurement-based quantum computing and loss-tolerant quantum communication.
We propose the generation of multi-dimensional lattice cluster states using a single, efficient spin-photon interface coupled strongly to a nuclear register.
arXiv Detail & Related papers (2021-04-26T14:41:01Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Theory of cavity QED with 2D atomic arrays [0.0]
We develop a quantum optical formalism to treat a two-dimensional array of atoms placed in an optical cavity.
We show that the inhibited damping can lead to a favorable scaling of the optomechanical parameters of an atom-array membrane placed within a cavity.
arXiv Detail & Related papers (2020-06-02T23:01:07Z) - High-Fidelity Entanglement and Detection of Alkaline-Earth Rydberg Atoms [48.093689931392866]
Controlled two-qubit entanglement generation has so far been limited to alkali species.
We demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms.
We find fidelities for Rydberg state detection, single-atom Rabi operations, and two-atom entanglement surpassing previously published values.
arXiv Detail & Related papers (2020-01-13T18:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.