Functional building blocks for scalable multipartite entanglement in
optical lattices
- URL: http://arxiv.org/abs/2210.02936v1
- Date: Thu, 6 Oct 2022 14:06:46 GMT
- Title: Functional building blocks for scalable multipartite entanglement in
optical lattices
- Authors: Wei-Yong Zhang, Ming-Gen He, Hui Sun, Yong-Guang Zheng, Ying Liu, An
Luo, Han-Yi Wang, Zi-Hang Zhu, Pei-Yue Qiu, Ying-Chao Shen, Xuan-Kai Wang,
Wan Lin, Song-Tao Yu, Bin-Chen Li, Bo Xiao, Meng-Da Li, Yu-Meng Yang, Xiao
Jiang, Han-Ning Dai, You Zhou, Xiongfeng Ma, Zhen-Sheng Yuan, Jian-Wei Pan
- Abstract summary: We develop a new architecture for implementing layers of quantum gates over moderately-separated atoms incorporated with a quantum gas microscope for single-atom manipulation.
We created and verified functional building blocks for scalable multipartite entanglement by connecting Bell pairs to one-dimensional 10-atom chains and two-dimensional plaquettes of $2times4$ atoms.
- Score: 7.362583014963337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Featuring excellent coherence and operated parallelly, ultracold atoms in
optical lattices form a competitive candidate for quantum computation. For
this, a massive number of parallel entangled atom pairs have been realized in
superlattices. However, the more formidable challenge is to scale-up and detect
multipartite entanglement due to the lack of manipulations over local atomic
spins in retro-reflected bichromatic superlattices. Here we developed a new
architecture based on a cross-angle spin-dependent superlattice for
implementing layers of quantum gates over moderately-separated atoms
incorporated with a quantum gas microscope for single-atom manipulation. We
created and verified functional building blocks for scalable multipartite
entanglement by connecting Bell pairs to one-dimensional 10-atom chains and
two-dimensional plaquettes of $2\times4$ atoms. This offers a new platform
towards scalable quantum computation and simulation.
Related papers
- Multi-partite entanglement in extreme nanophotonic cavities [0.0]
Multi-partite entanglement is fundamental to emerging quantum technologies such as quantum networks.
Here, we introduce nanobeam photonic crystal cavities combining both extreme quality factors.
operating at $780$ nm, our devices are tailored for efficient coupling and entanglement with ultracold $87$Rb atoms.
arXiv Detail & Related papers (2024-10-29T12:04:56Z) - Cavity Quantum Electrodynamics with Atom Arrays in Free Space [0.3277163122167433]
Cavity quantum electrodynamics (cavity QED) enables the control of light-matter interactions at the single-photon level.
We propose a cavity QED architecture based on atoms trapped in free space.
We show that a pair of two-dimensional, ordered arrays of atoms can be described by conventional cavity QED parameters.
arXiv Detail & Related papers (2024-09-23T18:01:27Z) - Quantum computing with subwavelength atomic arrays [1.1674893622721483]
Three-level quantum emitters embedded in a two-dimensional atomic array serve as a platform for quantum computation.
We design and simulate a set of universal quantum gates consisting of the $sqrttextiSWAP$ and single-qubit rotations.
These findings establish subwavelength emitter arrays as an alternative platform for quantum computation and quantum simulation.
arXiv Detail & Related papers (2023-06-14T14:59:25Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - A dual-element, two-dimensional atom array with continuous-mode
operation [0.3262230127283452]
We introduce a dual-element atom array with individual control of single rubidium and cesium atoms.
Our results enable avenues for ancilla-assisted quantum protocols such as quantum non-demolition measurements and quantum error correction.
arXiv Detail & Related papers (2021-10-11T18:00:17Z) - Quantum simulation with fully coherent dipole--dipole-interactions
mediated by three-dimensional subwavelength atomic arrays [0.0]
Quantum simulators employing cold atoms are among the most promising approaches to tackle quantum many-body problems.
Here, we propose to use a simple cubic three-dimensional array of atoms to produce an omnidirectional bandgap for light.
We show that it enables coherent, dissipation-free interactions between embedded impurities.
arXiv Detail & Related papers (2020-12-23T16:26:20Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Universal quantum computation and quantum error correction with
ultracold atomic mixtures [47.187609203210705]
We propose a mixture of two ultracold atomic species as a platform for universal quantum computation with long-range entangling gates.
One atomic species realizes localized collective spins of tunable length, which form the fundamental unit of information.
We discuss a finite-dimensional version of the Gottesman-Kitaev-Preskill code to protect quantum information encoded in the collective spins.
arXiv Detail & Related papers (2020-10-29T20:17:14Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z) - High-Fidelity Entanglement and Detection of Alkaline-Earth Rydberg Atoms [48.093689931392866]
Controlled two-qubit entanglement generation has so far been limited to alkali species.
We demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms.
We find fidelities for Rydberg state detection, single-atom Rabi operations, and two-atom entanglement surpassing previously published values.
arXiv Detail & Related papers (2020-01-13T18:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.