Quantum Circuits for SU(3) Lattice Gauge Theory
- URL: http://arxiv.org/abs/2503.08866v1
- Date: Tue, 11 Mar 2025 20:13:58 GMT
- Title: Quantum Circuits for SU(3) Lattice Gauge Theory
- Authors: Praveen Balaji, CianĂ¡n Conefrey-Shinozaki, Patrick Draper, Jason K. Elhaderi, Drishti Gupta, Luis Hidalgo, Andrew Lytle, Enrico Rinaldi,
- Abstract summary: We consider pure $SU(3)$ gauge theory in two and three spatial dimensions.<n>We build circuits for simulating time evolution on arbitrary lattice volumes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lattice gauge theories in varying dimensions, lattice volumes, and truncations offer a rich family of targets for Hamiltonian simulation on quantum devices. In return, formulating quantum simulations can provide new ways of thinking about the quantum structure of gauge theories. In this work, we consider pure $SU(3)$ gauge theory in two and three spatial dimensions in a streamlined version of the electric basis. We use a formulation of the theory that balances locality of the Hamiltonian and size of the gauge-invariant state space, and we classically pre-compute dictionaries of plaquette operator matrix elements for use in circuit construction. We build circuits for simulating time evolution on arbitrary lattice volumes, spanning circuits suitable for NISQ era hardware to future fault-tolerant devices. Relative to spin models, time evolution in lattice gauge theories involves more complex local unitaries, and the Hilbert space of all quantum registers may have large unphysical subspaces. Based on these features, we develop general, volume-scalable tools for optimizing circuit depth, including pruning and fusion algorithms for collections of large multi-controlled unitaries. We describe scalings of quantum resources needed to simulate larger circuits and some directions for future algorithmic development.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Variational quantum simulation of U(1) lattice gauge theories with qudit
systems [0.0]
We map D-dimensional Abelian lattice gauge theories onto qudit systems with local interactions for arbitrary D.
Our proposal can serve as a way of simulating lattice gauge theories, particularly in higher spatial dimensions, with minimal resources.
arXiv Detail & Related papers (2023-07-27T20:04:55Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
We introduce quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple quantum numbers.
The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions.
The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories.
arXiv Detail & Related papers (2022-12-28T18:56:25Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Lattice Quantum Chromodynamics and Electrodynamics on a Universal
Quantum Computer [0.033842793760651545]
We show a complete instruction-by-instruction to simulate lattice gauge theories on a quantum computer.
We show that lattice gauge theories in any spatial dimension can be simulated using $tildeO(T3/2N3/2Lambda/epsilon1/2)$ T gates.
arXiv Detail & Related papers (2021-07-27T12:27:39Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Quantum simulation of gauge theory via orbifold lattice [47.28069960496992]
We propose a new framework for simulating $textU(k)$ Yang-Mills theory on a universal quantum computer.
We discuss the application of our constructions to computing static properties and real-time dynamics of Yang-Mills theories.
arXiv Detail & Related papers (2020-11-12T18:49:11Z) - From the Jaynes-Cummings model to non-Abelian gauge theories: a guided
tour for the quantum engineer [0.0]
Non-Abelian lattice gauge theories play a central role in high energy physics, condensed matter and quantum information.
We introduce the necessary formalism in well-known Abelian gauge theories, such as the Jaynes-Cumming model.
We show that certain minimal non-Abelian lattice gauge theories can be mapped to three or four level systems.
arXiv Detail & Related papers (2020-06-01T20:53:36Z) - Toward scalable simulations of Lattice Gauge Theories on quantum
computers [0.0]
We provide a resource for simulations of real-time dynamics in lattice gauge theories on arbitrary dimensions.
We study the phenomena of flux-string breaking up to a genuine bi-dimensional model using classical quantum circuits.
arXiv Detail & Related papers (2020-05-20T18:00:30Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z) - Lattice Gauge Theory for a Quantum Computer [0.0]
Hamiltonian was introduced two decades ago as an alternative to Wilson's Euclidean lattice QCD with gauge fields represented by bi-linear fermion/anti-fermion operators.
D-theory leads naturally to quantum Qubit algorithms.
Digital quantum computing for gauge theories, the simplest example of U(1) compact QED on triangular lattice is defined.
arXiv Detail & Related papers (2020-02-24T01:16:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.