FIGNN: Feature-Specific Interpretability for Graph Neural Network Surrogate Models
- URL: http://arxiv.org/abs/2506.11398v1
- Date: Fri, 13 Jun 2025 01:45:37 GMT
- Title: FIGNN: Feature-Specific Interpretability for Graph Neural Network Surrogate Models
- Authors: Riddhiman Raut, Romit Maulik, Shivam Barwey,
- Abstract summary: This work presents a novel graph neural network architecture, the Feature-specific Interpretable Graph Neural Network (FIGNN)<n>FIGNN is designed to enhance the interpretability of deep learning surrogate models defined on unstructured grids in scientific applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents a novel graph neural network (GNN) architecture, the Feature-specific Interpretable Graph Neural Network (FIGNN), designed to enhance the interpretability of deep learning surrogate models defined on unstructured grids in scientific applications. Traditional GNNs often obscure the distinct spatial influences of different features in multivariate prediction tasks. FIGNN addresses this limitation by introducing a feature-specific pooling strategy, which enables independent attribution of spatial importance for each predicted variable. Additionally, a mask-based regularization term is incorporated into the training objective to explicitly encourage alignment between interpretability and predictive error, promoting localized attribution of model performance. The method is evaluated for surrogate modeling of two physically distinct systems: the SPEEDY atmospheric circulation model and the backward-facing step (BFS) fluid dynamics benchmark. Results demonstrate that FIGNN achieves competitive predictive performance while revealing physically meaningful spatial patterns unique to each feature. Analysis of rollout stability, feature-wise error budgets, and spatial mask overlays confirm the utility of FIGNN as a general-purpose framework for interpretable surrogate modeling in complex physical domains.
Related papers
- ReDiSC: A Reparameterized Masked Diffusion Model for Scalable Node Classification with Structured Predictions [64.17845687013434]
We propose ReDiSC, a structured diffusion model for structured node classification.<n>We show that ReDiSC achieves superior or highly competitive performance compared to state-of-the-art GNN, label propagation, and diffusion-based baselines.<n> Notably, ReDiSC scales effectively to large-scale datasets on which previous structured diffusion methods fail due to computational constraints.
arXiv Detail & Related papers (2025-07-19T04:46:53Z) - Variational Graph Convolutional Neural Networks [72.67088029389764]
Uncertainty can help improve the explainability of Graph Convolutional Networks.<n>Uncertainty can also be used in critical applications to verify the results of the model.
arXiv Detail & Related papers (2025-07-02T13:28:37Z) - Joint Graph Convolution and Sequential Modeling for Scalable Network Traffic Estimation [11.751952500567388]
This study focuses on the challenge of predicting network traffic within complex topological environments.<n>It introduces a Graph Contemporalal Networks (GCN) with Gated Recurrent Units (GRU) modeling approach.<n>The effectiveness of the proposed model is validated through comprehensive experiments on the real-world Abilene network traffic dataset.
arXiv Detail & Related papers (2025-05-12T15:38:19Z) - COMBINEX: A Unified Counterfactual Explainer for Graph Neural Networks via Node Feature and Structural Perturbations [6.894071825948456]
We propose COMBINEX, a novel GNN explainer that generates counterfactual explanations for both node and graph classification tasks.<n>Unlike prior methods, which treat structural and feature-based changes independently, COMBINEX optimally balances modifications to edges and node features.<n>This unified approach ensures minimal yet effective changes required to flip a model's prediction, resulting in realistic and interpretable counterfactuals.
arXiv Detail & Related papers (2025-02-14T12:17:24Z) - Learning local discrete features in explainable-by-design convolutional neural networks [0.0]
We introduce an explainable-by-design convolutional neural network (CNN) based on the lateral inhibition mechanism.
The model consists of the predictor, that is a high-accuracy CNN with residual or dense skip connections.
By collecting observations and directly calculating probabilities, we can explain causal relationships between motifs of adjacent levels.
arXiv Detail & Related papers (2024-10-31T18:39:41Z) - Hyperbolic Benchmarking Unveils Network Topology-Feature Relationship in GNN Performance [0.5416466085090772]
We introduce a comprehensive benchmarking framework for graph machine learning.
We generate synthetic networks with realistic topological properties and node feature vectors.
Results highlight the dependency of model performance on the interplay between network structure and node features.
arXiv Detail & Related papers (2024-06-04T20:40:06Z) - Out-of-Distribution Generalized Dynamic Graph Neural Network with
Disentangled Intervention and Invariance Promotion [61.751257172868186]
Dynamic graph neural networks (DyGNNs) have demonstrated powerful predictive abilities by exploiting graph and temporal dynamics.
Existing DyGNNs fail to handle distribution shifts, which naturally exist in dynamic graphs.
arXiv Detail & Related papers (2023-11-24T02:42:42Z) - Interpretable A-posteriori Error Indication for Graph Neural Network Surrogate Models [0.0]
This work introduces an interpretability enhancement procedure for graph neural networks (GNNs)
The end result is an interpretable GNN model that isolates regions in physical space, corresponding to sub-graphs, that are intrinsically linked to the forecasting task.
The interpretable GNNs can also be used to identify, during inference, graph nodes that correspond to a majority of the anticipated forecasting error.
arXiv Detail & Related papers (2023-11-13T18:37:07Z) - Contextualizing MLP-Mixers Spatiotemporally for Urban Data Forecast at Scale [54.15522908057831]
We propose an adapted version of the computationally-Mixer for STTD forecast at scale.
Our results surprisingly show that this simple-yeteffective solution can rival SOTA baselines when tested on several traffic benchmarks.
Our findings contribute to the exploration of simple-yet-effective models for real-world STTD forecasting.
arXiv Detail & Related papers (2023-07-04T05:19:19Z) - Disentangling Structured Components: Towards Adaptive, Interpretable and
Scalable Time Series Forecasting [52.47493322446537]
We develop a adaptive, interpretable and scalable forecasting framework, which seeks to individually model each component of the spatial-temporal patterns.
SCNN works with a pre-defined generative process of MTS, which arithmetically characterizes the latent structure of the spatial-temporal patterns.
Extensive experiments are conducted to demonstrate that SCNN can achieve superior performance over state-of-the-art models on three real-world datasets.
arXiv Detail & Related papers (2023-05-22T13:39:44Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
We formulate the OOD problem on graphs and develop a new invariant learning approach, Explore-to-Extrapolate Risk Minimization (EERM)
EERM resorts to multiple context explorers that are adversarially trained to maximize the variance of risks from multiple virtual environments.
We prove the validity of our method by theoretically showing its guarantee of a valid OOD solution.
arXiv Detail & Related papers (2022-02-05T02:31:01Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
Graphal networks (GCNs) promising performance in skeleton-based human action recognition by modeling a sequence of skeletons as a graph.
Most of the recently proposed G-temporal-based methods improve the performance by learning the graph structure at each layer of the network.
arXiv Detail & Related papers (2020-11-07T19:03:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.