Composite Data Augmentations for Synthetic Image Detection Against Real-World Perturbations
- URL: http://arxiv.org/abs/2506.11490v1
- Date: Fri, 13 Jun 2025 06:28:05 GMT
- Title: Composite Data Augmentations for Synthetic Image Detection Against Real-World Perturbations
- Authors: Efthymia Amarantidou, Christos Koutlis, Symeon Papadopoulos, Panagiotis C. Petrantonakis,
- Abstract summary: Synthetic Image Detection (SID) solutions struggle on generated images sourced from the Internet, as these are often altered by compression and other operations.<n>Our research enhances SID by exploring data augmentation combinations, leveraging a genetic algorithm for optimal augmentation selection, and introducing a dual-criteria optimization approach.<n>Our findings provide valuable insights for developing detection models capable of identifying synthetic images across varying qualities and transformations.
- Score: 14.985516487680917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advent of accessible Generative AI tools enables anyone to create and spread synthetic images on social media, often with the intention to mislead, thus posing a significant threat to online information integrity. Most existing Synthetic Image Detection (SID) solutions struggle on generated images sourced from the Internet, as these are often altered by compression and other operations. To address this, our research enhances SID by exploring data augmentation combinations, leveraging a genetic algorithm for optimal augmentation selection, and introducing a dual-criteria optimization approach. These methods significantly improve model performance under real-world perturbations. Our findings provide valuable insights for developing detection models capable of identifying synthetic images across varying qualities and transformations, with the best-performing model achieving a mean average precision increase of +22.53% compared to models without augmentations. The implementation is available at github.com/efthimia145/sid-composite-data-augmentation.
Related papers
- Is Artificial Intelligence Generated Image Detection a Solved Problem? [10.839070838139401]
AIGIBench is a benchmark designed to rigorously evaluate the robustness and generalization capabilities of state-of-the-art AIGI detectors.<n>It includes 23 diverse fake image subsets that span both advanced and widely adopted image generation techniques.<n>Experiments on 11 advanced detectors demonstrate that, despite their high reported accuracy in controlled settings, these detectors suffer significant performance drops on real-world data.
arXiv Detail & Related papers (2025-05-18T10:00:39Z) - CO-SPY: Combining Semantic and Pixel Features to Detect Synthetic Images by AI [58.35348718345307]
Current efforts to distinguish between real and AI-generated images may lack generalization.<n>We propose a novel framework, Co-Spy, that first enhances existing semantic features.<n>We also create Co-Spy-Bench, a comprehensive dataset comprising 5 real image datasets and 22 state-of-the-art generative models.
arXiv Detail & Related papers (2025-03-24T01:59:29Z) - Enhancing Diffusion Models for High-Quality Image Generation [0.0]
This report presents the comprehensive implementation, evaluation, and optimization of Denoising Diffusion Probabilistic Models (DDPMs) and Denoising Diffusion Implicit Models (DDIMs)<n>During inference, these models take random noise as input and iteratively generate high-quality images as output.<n>The motivation behind this work is the growing demand for efficient and scalable generative AI models that can produce realistic images across diverse datasets.
arXiv Detail & Related papers (2024-12-19T00:23:15Z) - Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
We introduce SEMI-TRUTHS, featuring 27,600 real images, 223,400 masks, and 1,472,700 AI-augmented images.
Each augmented image is accompanied by metadata for standardized and targeted evaluation of detector robustness.
Our findings suggest that state-of-the-art detectors exhibit varying sensitivities to the types and degrees of perturbations, data distributions, and augmentation methods used.
arXiv Detail & Related papers (2024-11-12T01:17:27Z) - SIDBench: A Python Framework for Reliably Assessing Synthetic Image Detection Methods [9.213926755375024]
The creation of completely synthetic images presents a unique challenge.
There is often a large gap between experimental results on benchmark datasets and the performance of methods in the wild.
This paper introduces a benchmarking framework that integrates several state-of-the-art SID models.
arXiv Detail & Related papers (2024-04-29T09:50:16Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
We introduce a novel framework called bridged transfer, which initially employs synthetic images for fine-tuning a pre-trained model to improve its transferability.
We propose dataset style inversion strategy to improve the stylistic alignment between synthetic and real images.
Our proposed methods are evaluated across 10 different datasets and 5 distinct models, demonstrating consistent improvements.
arXiv Detail & Related papers (2024-03-28T22:25:05Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Adaptive Input-image Normalization for Solving the Mode Collapse Problem in GAN-based X-ray Images [0.08192907805418582]
This work contributes an empirical demonstration of the benefits of integrating the adaptive input-image normalization with the Deep Conversaal GAN and Auxiliary GAN to alleviate the mode collapse problems.
Results demonstrate that the DCGAN and the ACGAN with adaptive input-image normalization outperform the DCGAN and ACGAN with un-normalized X-ray images.
arXiv Detail & Related papers (2023-09-21T16:43:29Z) - Identity-Aware CycleGAN for Face Photo-Sketch Synthesis and Recognition [61.87842307164351]
We first propose an Identity-Aware CycleGAN (IACycleGAN) model that applies a new perceptual loss to supervise the image generation network.
It improves CycleGAN on photo-sketch synthesis by paying more attention to the synthesis of key facial regions, such as eyes and nose.
We develop a mutual optimization procedure between the synthesis model and the recognition model, which iteratively synthesizes better images by IACycleGAN.
arXiv Detail & Related papers (2021-03-30T01:30:08Z) - Image Augmentations for GAN Training [57.65145659417266]
We provide insights and guidelines on how to augment images for both vanilla GANs and GANs with regularizations.
Surprisingly, we find that vanilla GANs attain generation quality on par with recent state-of-the-art results.
arXiv Detail & Related papers (2020-06-04T00:16:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.