SIDBench: A Python Framework for Reliably Assessing Synthetic Image Detection Methods
- URL: http://arxiv.org/abs/2404.18552v1
- Date: Mon, 29 Apr 2024 09:50:16 GMT
- Title: SIDBench: A Python Framework for Reliably Assessing Synthetic Image Detection Methods
- Authors: Manos Schinas, Symeon Papadopoulos,
- Abstract summary: The creation of completely synthetic images presents a unique challenge.
There is often a large gap between experimental results on benchmark datasets and the performance of methods in the wild.
This paper introduces a benchmarking framework that integrates several state-of-the-art SID models.
- Score: 9.213926755375024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The generative AI technology offers an increasing variety of tools for generating entirely synthetic images that are increasingly indistinguishable from real ones. Unlike methods that alter portions of an image, the creation of completely synthetic images presents a unique challenge and several Synthetic Image Detection (SID) methods have recently appeared to tackle it. Yet, there is often a large gap between experimental results on benchmark datasets and the performance of methods in the wild. To better address the evaluation needs of SID and help close this gap, this paper introduces a benchmarking framework that integrates several state-of-the-art SID models. Our selection of integrated models was based on the utilization of varied input features, and different network architectures, aiming to encompass a broad spectrum of techniques. The framework leverages recent datasets with a diverse set of generative models, high level of photo-realism and resolution, reflecting the rapid improvements in image synthesis technology. Additionally, the framework enables the study of how image transformations, common in assets shared online, such as JPEG compression, affect detection performance. SIDBench is available on https://github.com/mever-team/sidbench and is designed in a modular manner to enable easy inclusion of new datasets and SID models.
Related papers
- Detecting the Undetectable: Combining Kolmogorov-Arnold Networks and MLP for AI-Generated Image Detection [0.0]
This paper presents a novel detection framework adept at robustly identifying images produced by cutting-edge generative AI models.
We propose a classification system that integrates semantic image embeddings with a traditional Multilayer Perceptron (MLP)
arXiv Detail & Related papers (2024-08-18T06:00:36Z) - ImagiNet: A Multi-Content Dataset for Generalizable Synthetic Image Detection via Contrastive Learning [0.0]
Generative models produce images with a level of authenticity nearly indistinguishable from real photos and artwork.
The difficulty of identifying synthetic images leaves online media platforms vulnerable to impersonation and misinformation attempts.
We introduce ImagiNet, a high-resolution and balanced dataset for synthetic image detection.
arXiv Detail & Related papers (2024-07-29T13:57:24Z) - OneDiff: A Generalist Model for Image Difference Captioning [5.71214984158106]
Image Difference Captioning (IDC) is crucial for accurately describing variations between closely related images.
OneDiff is a novel generalist approach that utilizes a robust vision-language model architecture.
OneDiff consistently outperforms existing state-of-the-art models in accuracy and adaptability.
arXiv Detail & Related papers (2024-07-08T06:14:37Z) - Diversify, Don't Fine-Tune: Scaling Up Visual Recognition Training with
Synthetic Images [37.29348016920314]
We present a new framework leveraging off-the-shelf generative models to generate synthetic training images.
We address class name ambiguity, lack of diversity in naive prompts, and domain shifts.
Our framework consistently enhances recognition model performance with more synthetic data.
arXiv Detail & Related papers (2023-12-04T18:35:27Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Joint Learning of Deep Texture and High-Frequency Features for
Computer-Generated Image Detection [24.098604827919203]
We propose a joint learning strategy with deep texture and high-frequency features for CG image detection.
A semantic segmentation map is generated to guide the affine transformation operation.
The combination of the original image and the high-frequency components of the original and rendered images are fed into a multi-branch neural network equipped with attention mechanisms.
arXiv Detail & Related papers (2022-09-07T17:30:40Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPMs) have achieved remarkable success in various image generation tasks.
Recent work on semantic image synthesis mainly follows the emphde facto Generative Adversarial Nets (GANs)
arXiv Detail & Related papers (2022-06-30T18:31:51Z) - High-Quality Pluralistic Image Completion via Code Shared VQGAN [51.7805154545948]
We present a novel framework for pluralistic image completion that can achieve both high quality and diversity at much faster inference speed.
Our framework is able to learn semantically-rich discrete codes efficiently and robustly, resulting in much better image reconstruction quality.
arXiv Detail & Related papers (2022-04-05T01:47:35Z) - Identity-Aware CycleGAN for Face Photo-Sketch Synthesis and Recognition [61.87842307164351]
We first propose an Identity-Aware CycleGAN (IACycleGAN) model that applies a new perceptual loss to supervise the image generation network.
It improves CycleGAN on photo-sketch synthesis by paying more attention to the synthesis of key facial regions, such as eyes and nose.
We develop a mutual optimization procedure between the synthesis model and the recognition model, which iteratively synthesizes better images by IACycleGAN.
arXiv Detail & Related papers (2021-03-30T01:30:08Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.