Prioritizing Alignment Paradigms over Task-Specific Model Customization in Time-Series LLMs
- URL: http://arxiv.org/abs/2506.11512v1
- Date: Fri, 13 Jun 2025 07:13:05 GMT
- Title: Prioritizing Alignment Paradigms over Task-Specific Model Customization in Time-Series LLMs
- Authors: Wei Li, Yunyao Cheng, Xinli Hao, Chaohong Ma, Yuxuan Liang, Bin Yang, Christian S. Jensen, Xiaofeng Meng,
- Abstract summary: This paper advocates a shift in approaching time-series reasoning with Large Language Models (LLMs)<n>It addresses the core limitations of current time-series reasoning approaches, which are often costly, inflexible, and inefficient.<n>We propose three alignment paradigms: Injective Alignment, Bridging Alignment and Internal Alignment.
- Score: 24.25288301208334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in Large Language Models (LLMs) have enabled unprecedented capabilities for time-series reasoning in diverse real-world applications, including medical, financial, and spatio-temporal domains. However, existing approaches typically focus on task-specific model customization, such as forecasting and anomaly detection, while overlooking the data itself, referred to as time-series primitives, which are essential for in-depth reasoning. This position paper advocates a fundamental shift in approaching time-series reasoning with LLMs: prioritizing alignment paradigms grounded in the intrinsic primitives of time series data over task-specific model customization. This realignment addresses the core limitations of current time-series reasoning approaches, which are often costly, inflexible, and inefficient, by systematically accounting for intrinsic structure of data before task engineering. To this end, we propose three alignment paradigms: Injective Alignment, Bridging Alignment, and Internal Alignment, which are emphasized by prioritizing different aspects of time-series primitives: domain, characteristic, and representation, respectively, to activate time-series reasoning capabilities of LLMs to enable economical, flexible, and efficient reasoning. We further recommend that practitioners adopt an alignment-oriented method to avail this instruction to select an appropriate alignment paradigm. Additionally, we categorize relevant literature into these alignment paradigms and outline promising research directions.
Related papers
- Counterfactual Tuning for Temporal Sensitivity Enhancement in Large Language Model-based Recommendation [8.798364656768657]
Existing large language models (LLMs) fail to leverage the rich temporal information inherent in users' historical interaction sequences.<n>We propose Counterfactual Enhanced Temporal Framework for LLM-Based Recommendation (CETRec)<n> CETRec is grounded in causal inference principles, which allow it to isolate and measure the specific impact of temporal information on recommendation outcomes.
arXiv Detail & Related papers (2025-07-03T10:11:35Z) - Enhancing LLM Reasoning for Time Series Classification by Tailored Thinking and Fused Decision [8.256998757769322]
ReasonTSC is a framework designed to leverage LLM reasoning for time series classification.<n>It steers the model to think over the essential characteristics of time series data.<n>It integrates predictions and confidence scores from plug-in classifiers, e.g., domain-specific time series models, as in-context examples.
arXiv Detail & Related papers (2025-06-01T03:15:54Z) - Efficient Model Selection for Time Series Forecasting via LLMs [52.31535714387368]
We propose to leverage Large Language Models (LLMs) as a lightweight alternative for model selection.<n>Our method eliminates the need for explicit performance matrices by utilizing the inherent knowledge and reasoning capabilities of LLMs.
arXiv Detail & Related papers (2025-04-02T20:33:27Z) - LLM-PS: Empowering Large Language Models for Time Series Forecasting with Temporal Patterns and Semantics [56.99021951927683]
Time Series Forecasting (TSF) is critical in many real-world domains like financial planning and health monitoring.<n>Existing Large Language Models (LLMs) usually perform suboptimally because they neglect the inherent characteristics of time series data.<n>We propose LLM-PS to empower the LLM for TSF by learning the fundamental textitPatterns and meaningful textitSemantics from time series data.
arXiv Detail & Related papers (2025-03-12T11:45:11Z) - Learning Latent Spaces for Domain Generalization in Time Series Forecasting [60.29403194508811]
Time series forecasting is vital in many real-world applications, yet developing models that generalize well on unseen relevant domains remains underexplored.<n>We propose a framework for domain generalization in time series forecasting by mining the latent factors that govern temporal dependencies across domains.<n>Our approach uses a decomposition-based architecture with a new Conditional $beta$-Variational Autoencoder (VAE), wherein time series data is first decomposed into trend-cyclical and seasonal components.
arXiv Detail & Related papers (2024-12-15T12:41:53Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.<n>We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.<n>We propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Towards Generalisable Time Series Understanding Across Domains [10.350643783811174]
We introduce a novel pre-training paradigm specifically designed to handle time series heterogeneity.<n>We propose a tokeniser with learnable domain signatures, a dual masking strategy, and a normalised cross-correlation loss.<n>Our code and pre-trained weights are available at https://www.oetu.com/oetu/otis.
arXiv Detail & Related papers (2024-10-09T17:09:30Z) - Domain-Oriented Time Series Inference Agents for Reasoning and Automated Analysis [19.649769354503658]
We introduce TS-Reasoner, a Domain-Oriented Time Series Agent that integrates natural language reasoning with precise numerical execution.<n>We evaluate its capabilities through two axes: basic time series understanding and complex multi-step inference.
arXiv Detail & Related papers (2024-10-05T06:04:19Z) - Metadata Matters for Time Series: Informative Forecasting with Transformers [70.38241681764738]
We propose a Metadata-informed Time Series Transformer (MetaTST) for time series forecasting.
To tackle the unstructured nature of metadata, MetaTST formalizes them into natural languages by pre-designed templates.
A Transformer encoder is employed to communicate series and metadata tokens, which can extend series representations by metadata information.
arXiv Detail & Related papers (2024-10-04T11:37:55Z) - tPARAFAC2: Tracking evolving patterns in (incomplete) temporal data [0.7285444492473742]
We introduce t(emporal)PARAFAC2, which utilizes smoothness temporal regularization on the evolving factors.<n>We show that tPARAFAC2 can extract the underlying evolving patterns more accurately compared to the state-of-the-art in the presence of high amounts of noise and missing data.
arXiv Detail & Related papers (2024-07-01T15:10:55Z) - UniCL: A Universal Contrastive Learning Framework for Large Time Series Models [18.005358506435847]
Time-series analysis plays a pivotal role across a range of critical applications, from finance to healthcare.
Traditional supervised learning methods first annotate extensive labels for time-series data in each task.
This paper introduces UniCL, a universal and scalable contrastive learning framework designed for pretraining time-series foundation models.
arXiv Detail & Related papers (2024-05-17T07:47:11Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z) - Data-driven Preference Learning Methods for Sorting Problems with
Multiple Temporal Criteria [17.673512636899076]
This study presents novel preference learning approaches to multiple criteria sorting problems in the presence of temporal criteria.
To enhance scalability and accommodate learnable time discount factors, we introduce a novel monotonic Recurrent Neural Network (mRNN)
The proposed mRNN can describe the preference dynamics by depicting marginal value functions and personalized time discount factors along with time.
arXiv Detail & Related papers (2023-09-22T05:08:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.