DaMO: A Data-Efficient Multimodal Orchestrator for Temporal Reasoning with Video LLMs
- URL: http://arxiv.org/abs/2506.11558v3
- Date: Mon, 21 Jul 2025 16:37:00 GMT
- Title: DaMO: A Data-Efficient Multimodal Orchestrator for Temporal Reasoning with Video LLMs
- Authors: Bo-Cheng Chiu, Jen-Jee Chen, Yu-Chee Tseng, Feng-Chi Chen,
- Abstract summary: We introduce DaMO, a data-efficient Video LLM specifically designed for accurate temporal reasoning and multimodal understanding.<n>We train DaMO via a structured four-stage progressive training paradigm, incrementally equipping the model with multimodal alignment, semantic grounding, and temporal reasoning capabilities.<n>Our work establishes a promising direction for data-efficient video-language modeling.
- Score: 5.074812070492738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have recently been extended to the video domain, enabling sophisticated video-language understanding. However, existing Video LLMs often exhibit limitations in fine-grained temporal reasoning, restricting their ability to precisely attribute responses to specific video moments, especially under constrained supervision. We introduce DaMO, a data-efficient Video LLM explicitly designed for accurate temporal reasoning and multimodal understanding. At its core, the proposed Temporal-aware Fuseformer employs a hierarchical dual-stream architecture that progressively captures temporal dynamics within each modality and effectively fuses complementary visual and audio information. To further enhance computational efficiency, DaMO integrates a global residual that reduces spatial redundancy while preserving essential semantic details. We train DaMO via a structured four-stage progressive training paradigm, incrementally equipping the model with multimodal alignment, semantic grounding, and temporal reasoning capabilities. This work also contributes multiple datasets augmented from existing ones with LLM-generated temporally grounded QA pairs for tasks requiring temporal supervision. Comprehensive experiments on temporal grounding and video QA benchmarks demonstrate that DaMO consistently surpasses prior methods, particularly in tasks demanding precise temporal alignment and reasoning. Our work establishes a promising direction for data-efficient video-language modeling.
Related papers
- Universal Video Temporal Grounding with Generative Multi-modal Large Language Models [59.781211641591405]
This paper presents a computational model for universal video temporal grounding, which accurately localizes temporal moments in videos based on natural language queries.<n>We propose UniTime, a robust and universal video grounding model leveraging the strong vision-language understanding capabilities of generative Multi-modal Large Language Models (MLLMs)<n>Our model effectively handles videos of diverse views, genres, and lengths while comprehending complex language queries.
arXiv Detail & Related papers (2025-06-23T17:53:18Z) - VideoMolmo: Spatio-Temporal Grounding Meets Pointing [73.25506085339252]
VideoMolmo is a model tailored for fine-grained pointing of video sequences.<n>A novel temporal mask fusion employs SAM2 for bidirectional point propagation.<n>To evaluate the generalization of VideoMolmo, we introduce VPoMolS-temporal, a challenging out-of-distribution benchmark spanning five real-world scenarios.
arXiv Detail & Related papers (2025-06-05T17:59:29Z) - Reinforcement Learning Tuning for VideoLLMs: Reward Design and Data Efficiency [56.475612147721264]
We propose a dual-reward formulation that supervises both semantic and temporal reasoning through discrete and continuous reward signals.<n>We evaluate our approach across eight representative video understanding tasks, including VideoQA, Temporal Video Grounding, and Grounded VideoQA.<n>Results underscore the importance of reward design and data selection in advancing reasoning-centric video understanding with MLLMs.
arXiv Detail & Related papers (2025-06-02T17:28:26Z) - MUSEG: Reinforcing Video Temporal Understanding via Timestamp-Aware Multi-Segment Grounding [55.32878803528196]
Video temporal understanding is crucial for multimodal large language models (MLLMs) to reason over events in videos.<n>We propose MUSEG, a novel RL-based method that enhances temporal understanding by introducing timestamp-aware multi-segment grounding.<n>To facilitate effective learning, we design a customized RL training recipe with phased rewards that progressively guides the model toward temporally grounded reasoning.
arXiv Detail & Related papers (2025-05-27T04:50:07Z) - Everything Can Be Described in Words: A Simple Unified Multi-Modal Framework with Semantic and Temporal Alignment [0.0]
We propose UMaT, a framework that unifies visual and auditory inputs as structured text for large language models.<n>It significantly improves state-of-the-art Long Video Question Answering accuracy.
arXiv Detail & Related papers (2025-03-12T05:28:24Z) - Token-Efficient Long Video Understanding for Multimodal LLMs [101.70681093383365]
STORM is a novel architecture incorporating a dedicated temporal encoder between the image encoder and the Video-LLMs.<n>We show that STORM achieves state-of-the-art results across various long video understanding benchmarks.
arXiv Detail & Related papers (2025-03-06T06:17:38Z) - Temporal Working Memory: Query-Guided Segment Refinement for Enhanced Multimodal Understanding [28.635761403266496]
We introduce a specialized cognitive module, temporal working memory (TWM), which aims to enhance the temporal modeling capabilities of MFMs.<n>TWM selectively retains task-relevant information across temporal dimensions, ensuring that critical details are preserved throughout the processing of video and audio content.<n>With our TWM, nine state-of-the-art models exhibit significant performance improvements across tasks such as video captioning, question answering, and video-text retrieval.
arXiv Detail & Related papers (2025-02-09T20:26:30Z) - Exploring the Role of Explicit Temporal Modeling in Multimodal Large Language Models for Video Understanding [23.477954901326978]
Existing approaches adopt either implicit temporal modeling, relying solely on the decoder, or explicit temporal modeling, employing auxiliary temporal encoders.<n>We propose the explicit Temporal (STE) to enable flexible explicit temporal modeling with adjustable receptive temporal fields and token compression ratios.<n>Our findings emphasize the critical role of explicit temporal modeling, providing actionable insights to advance video MLLMs.
arXiv Detail & Related papers (2025-01-28T08:30:58Z) - Perceive, Query & Reason: Enhancing Video QA with Question-Guided Temporal Queries [50.47265863322891]
Video Question Answering (Video QA) is a challenging video understanding task that requires models to comprehend entire videos.<n>Recent advancements in Multimodal Large Language Models (MLLMs) have transformed video QA by leveraging their exceptional commonsense reasoning capabilities.<n>We propose T-Former, a novel temporal modeling method that creates a question-guided temporal bridge between frame-wise visual perception and the reasoning capabilities of LLMs.
arXiv Detail & Related papers (2024-12-26T17:53:14Z) - Do Language Models Understand Time? [2.290956583394892]
Large language models (LLMs) have revolutionized video-based computer vision applications, including action recognition, anomaly detection, and summarization.<n>This work critically examines the role of LLMs in video processing, with a specific focus on their temporal reasoning capabilities.<n>We analyze challenges posed by existing video datasets, including biases, lack of temporal annotations, and domain-specific limitations that constrain the temporal understanding of LLMs.
arXiv Detail & Related papers (2024-12-18T13:38:06Z) - Temporal Contrastive Learning for Video Temporal Reasoning in Large Vision-Language Models [44.99833362998488]
Temporal Semantic Alignment via Dynamic Prompting (TSADP) is a novel framework that enhances temporal reasoning capabilities.<n>We evaluate TSADP on the VidSitu dataset, augmented with enriched temporal annotations.<n>Our analysis highlights the robustness, efficiency, and practical utility of TSADP, making it a step forward in the field of video-language understanding.
arXiv Detail & Related papers (2024-12-16T02:37:58Z) - InternLM-XComposer2.5-OmniLive: A Comprehensive Multimodal System for Long-term Streaming Video and Audio Interactions [104.90258030688256]
This project introduces disentangled streaming perception, reasoning, and memory mechanisms, enabling real-time interaction with streaming video and audio input.<n>This project simulates human-like cognition, enabling multimodal large language models to provide continuous and adaptive service over time.
arXiv Detail & Related papers (2024-12-12T18:58:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.