論文の概要: DISCO: Mitigating Bias in Deep Learning with Conditional Distance Correlation
- arxiv url: http://arxiv.org/abs/2506.11653v1
- Date: Fri, 13 Jun 2025 10:29:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 17:50:49.753122
- Title: DISCO: Mitigating Bias in Deep Learning with Conditional Distance Correlation
- Title(参考訳): DISCO:条件付き距離相関を用いた深層学習におけるバイアスの緩和
- Authors: Emre Kavak, Tom Nuno Wolf, Christian Wachinger,
- Abstract要約: 予測タスクの間、モデルは受信した任意の信号を使って最終回答を導き出すことができる。
実際のオブジェクト固有の詳細ではなく、照明条件を使用する予測器は、明らかに望ましくない。
本稿では,我々の予測に影響を及ぼす情報経路を解析するための因果的枠組みを構築するための標準的な反因果予測モデル(SAM)を提案する。
- 参考スコア(独自算出の注目度): 2.280359339174839
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: During prediction tasks, models can use any signal they receive to come up with the final answer - including signals that are causally irrelevant. When predicting objects from images, for example, the lighting conditions could be correlated to different targets through selection bias, and an oblivious model might use these signals as shortcuts to discern between various objects. A predictor that uses lighting conditions instead of real object-specific details is obviously undesirable. To address this challenge, we introduce a standard anti-causal prediction model (SAM) that creates a causal framework for analyzing the information pathways influencing our predictor in anti-causal settings. We demonstrate that a classifier satisfying a specific conditional independence criterion will focus solely on the direct causal path from label to image, being counterfactually invariant to the remaining variables. Finally, we propose DISCO, a novel regularization strategy that uses conditional distance correlation to optimize for conditional independence in regression tasks. We can show that DISCO achieves competitive results in different bias mitigation experiments, deeming it a valid alternative to classical kernel-based methods.
- Abstract(参考訳): 予測タスクの間、モデルは受信した任意の信号を使って最終回答を導き出すことができる。
例えば、画像から物体を予測する場合、照明条件は選択バイアスによって異なる目標に相関する可能性がある。
実際のオブジェクト固有の詳細ではなく、照明条件を使用する予測器は、明らかに望ましくない。
この課題に対処するために、私たちは標準的なアンチカジュアル予測モデル(SAM)を導入し、アンチカジュアル設定において我々の予測に影響を及ぼす情報経路を解析するための因果的枠組みを作成します。
本研究では,特定の条件付き独立条件を満たす分類器が,ラベルから画像への直接因果経路にのみ焦点をあてることを示し,残りの変数に反実的に不変であることを示す。
最後に、条件距離相関を用いて回帰タスクにおける条件独立性を最適化する新しい正規化戦略であるdisCOを提案する。
DISCOは、異なるバイアス緩和実験において、従来のカーネルベースの手法の代替として有効なものとみなして、競合する結果を達成していることを示すことができる。
関連論文リスト
- ShortcutProbe: Probing Prediction Shortcuts for Learning Robust Models [26.544938760265136]
ディープラーニングモデルは、必然的にターゲットと非本質的な特徴の間の急激な相関を学習する。
本稿では,グループラベルを必要とせず,新たなポストホックスプリアスバイアス緩和フレームワークを提案する。
我々のフレームワークであるShortcutProbeは、与えられたモデルの潜在空間における予測の非破壊性を反映した予測ショートカットを識別する。
論文 参考訳(メタデータ) (2025-05-20T04:21:17Z) - Unintentional Unalignment: Likelihood Displacement in Direct Preference Optimization [60.176008034221404]
直接選好最適化(DPO)とその変種は、言語モデルと人間の選好の整合にますます利用されている。
以前の研究では、トレーニング中に好まれる反応の可能性が減少する傾向が見られた。
確率変位は破滅的になりうることを示し、確率質量を好ましくない反応から反対の意味の反応へとシフトさせる。
論文 参考訳(メタデータ) (2024-10-11T14:22:44Z) - Detecting and Identifying Selection Structure in Sequential Data [53.24493902162797]
我々は,音楽のシーケンスなどの実践的な状況において,潜在目的に基づくデータポイントの選択的包摂が一般的である,と論じる。
選択構造はパラメトリックな仮定や介入実験なしで識別可能であることを示す。
また、他の種類の依存関係と同様に、選択構造を検知し、識別するための証明可能な正当性アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-29T20:56:34Z) - Bias-Conflict Sample Synthesis and Adversarial Removal Debias Strategy
for Temporal Sentence Grounding in Video [67.24316233946381]
TSGV(Temporal Sentence Grounding in Video)は、データセットバイアスの問題に悩まされている。
偏りを伴うサンプル合成と逆行性除去脱バイアス戦略(BSSARD)を提案する。
論文 参考訳(メタデータ) (2024-01-15T09:59:43Z) - Model-based causal feature selection for general response types [8.228587135343071]
Invariant causal prediction (ICP) は、不均一な設定からのデータを必要とする因果的特徴選択の手法である。
我々は変換モデル(TRAM)ベースのICPを開発し、連続的、分類的、カウント型、非形式的に検閲された応答を可能にする。
我々は、オープンソースのRパッケージ「tramicp」を提供し、シミュレーションデータに対する我々のアプローチを評価し、重篤な患者の生存の因果的特徴を調査する事例研究を行った。
論文 参考訳(メタデータ) (2023-09-22T12:42:48Z) - When Does Confidence-Based Cascade Deferral Suffice? [69.28314307469381]
カスケードは、推論コストをサンプル毎に適応的に変化させる古典的な戦略である。
deferralルールは、シーケンス内の次の分類子を呼び出すか、または予測を終了するかを決定する。
カスケードの構造に執着しているにもかかわらず、信頼に基づく推論は実際は極めてうまく機能することが多い。
論文 参考訳(メタデータ) (2023-07-06T04:13:57Z) - Bivariate Causal Discovery using Bayesian Model Selection [11.726586969589]
ベイズ的枠組みに因果仮定を組み込む方法について述べる。
これにより、現実的な仮定でモデルを構築することができます。
その後、幅広いベンチマークデータセットにおいて、従来の手法よりも優れています。
論文 参考訳(メタデータ) (2023-06-05T14:51:05Z) - Look Beyond Bias with Entropic Adversarial Data Augmentation [4.893694715581673]
ディープニューラルネットワークは、スパイラルパターンと因果パターンを区別せず、他を無視しながら最も予測的なパターンのみを学ぶ。
ネットワークをこのような刺激的なバイアスに頑健にするためにデバイアス法が開発されたが、データセットがバイアスを受けているかどうかを事前に知る必要がある。
本稿では,「隠された」因果情報がバイアス画像に含まれる場合が多いため,このようなサンプルは必ずしも必要ではない,と論じる。
論文 参考訳(メタデータ) (2023-01-10T08:25:24Z) - Probabilistic Anchor Assignment with IoU Prediction for Object Detection [9.703212439661097]
オブジェクト検出では、どのアンカーを正または負のサンプルとして割り当てるか、すなわちアンカー代入(アンカー代入)がモデルの性能に大きく影響を与えるコアプロシージャとして明らかにされている。
本稿では,モデルの学習状況に応じて,アンカーを正と負のサンプルに適応的に分離する新しいアンカー代入戦略を提案する。
論文 参考訳(メタデータ) (2020-07-16T04:26:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。