論文の概要: Brain Network Analysis Based on Fine-tuned Self-supervised Model for Brain Disease Diagnosis
- arxiv url: http://arxiv.org/abs/2506.11671v1
- Date: Fri, 13 Jun 2025 11:03:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 17:50:49.757865
- Title: Brain Network Analysis Based on Fine-tuned Self-supervised Model for Brain Disease Diagnosis
- Title(参考訳): 脳疾患診断のための微調整自己教師モデルに基づく脳ネットワーク解析
- Authors: Yifei Tang, Hongjie Jiang, Changhong Jing, Hieu Pham, Shuqiang Wang,
- Abstract要約: 脳疾患診断のための微調整脳ネットワークモデルを提案する。
元の脳ネットワークモデルに基づいて、複数の次元にまたがる脳領域の表現を拡張する。
本実験は,脳疾患の診断において,提案モデルが優れた性能を発揮することを示す。
- 参考スコア(独自算出の注目度): 14.470736879660285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Functional brain network analysis has become an indispensable tool for brain disease analysis. It is profoundly impacted by deep learning methods, which can characterize complex connections between ROIs. However, the research on foundation models of brain network is limited and constrained to a single dimension, which restricts their extensive application in neuroscience. In this study, we propose a fine-tuned brain network model for brain disease diagnosis. It expands brain region representations across multiple dimensions based on the original brain network model, thereby enhancing its generalizability. Our model consists of two key modules: (1)an adapter module that expands brain region features across different dimensions. (2)a fine-tuned foundation brain network model, based on self-supervised learning and pre-trained on fMRI data from thousands of participants. Specifically, its transformer block is able to effectively extract brain region features and compute the inter-region associations. Moreover, we derive a compact latent representation of the brain network for brain disease diagnosis. Our downstream experiments in this study demonstrate that the proposed model achieves superior performance in brain disease diagnosis, which potentially offers a promising approach in brain network analysis research.
- Abstract(参考訳): 機能的脳ネットワーク分析は、脳疾患解析に欠かせないツールとなっている。
これは、ROI間の複雑な接続を特徴付ける深層学習法の影響を強く受けている。
しかし、脳ネットワークの基礎モデルの研究は、単一の次元に制限され、神経科学における広範囲の応用を制限する。
本研究では,脳疾患診断のための微調整脳ネットワークモデルを提案する。
元の脳ネットワークモデルに基づいて、脳領域の表現を複数の次元に拡張し、その一般化性を高める。
本モデルは2つの重要なモジュールから構成される。(1)脳領域の特徴を異なる次元にわたって拡張するアダプタモジュール。
2) 自己教師型学習に基づく基礎脳ネットワークモデルを構築し, 何千人もの参加者のfMRIデータを事前学習した。
具体的には、そのトランスフォーマーブロックは、脳領域の特徴を効果的に抽出し、領域間の関連を計算することができる。
さらに、脳疾患診断のための脳ネットワークのコンパクトな潜伏表現を導出する。
本研究は,脳ネットワーク解析研究において有望なアプローチをもたらす可能性がある脳疾患診断において,提案モデルが優れた性能を発揮することを示すものである。
関連論文リスト
- BrainMAP: Learning Multiple Activation Pathways in Brain Networks [77.15180533984947]
本稿では,脳ネットワークにおける複数の活性化経路を学習するための新しいフレームワークであるBrainMAPを紹介する。
本フレームワークは,タスクに関わる重要な脳領域の説明的分析を可能にする。
論文 参考訳(メタデータ) (2024-12-23T09:13:35Z) - Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - BrainSegFounder: Towards 3D Foundation Models for Neuroimage Segmentation [6.5388528484686885]
本研究は,医療基盤モデルの創出に向けた新しいアプローチを紹介する。
本稿では,視覚変換器を用いた2段階事前学習手法を提案する。
BrainFounderは、これまでの勝利ソリューションの成果を上回る、大幅なパフォーマンス向上を実演している。
論文 参考訳(メタデータ) (2024-06-14T19:49:45Z) - D-CoRP: Differentiable Connectivity Refinement for Functional Brain Networks [4.675640373196467]
脳ネットワークの既存のモデルは、通常、脳の領域に焦点を当てたり、脳の結合性の複雑さを見落としたりする。
我々は脳の接続性を改善するための識別可能なモジュールを開発した。
実験の結果,提案手法は様々なベースラインモデルの性能を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2024-05-28T23:49:52Z) - BrainNetDiff: Generative AI Empowers Brain Network Generation via
Multimodal Diffusion Model [7.894526238189559]
我々は、マルチヘッドトランスフォーマーエンコーダを組み合わせてfMRI時系列から関連する特徴を抽出するBrainNetDiffを紹介する。
健康・神経障害コホートにおける脳ネットワーク構築におけるこの枠組みの適用性を検証する。
論文 参考訳(メタデータ) (2023-11-09T08:27:12Z) - Transformer-Based Hierarchical Clustering for Brain Network Analysis [13.239896897835191]
本稿では,階層型クラスタ同定と脳ネットワーク分類のための新しい解釈可能なトランスフォーマーモデルを提案する。
階層的クラスタリング(hierarchical clustering)の助けを借りて、このモデルは精度の向上と実行時の複雑性の低減を実現し、脳領域の機能的構造に関する明確な洞察を提供する。
論文 参考訳(メタデータ) (2023-05-06T22:14:13Z) - Brain Diffuser: An End-to-End Brain Image to Brain Network Pipeline [54.93591298333767]
脳ディフューザー(Brain diffuser)は、拡散に基づくエンド・ツー・エンドの脳ネットワーク生成モデルである。
被験者間の構造的脳ネットワークの差異を分析することで、より構造的接続性や疾患関連情報を利用する。
アルツハイマー病の場合、提案モデルは、アルツハイマー病神経画像イニシアチブデータベース上の既存のツールキットの結果より優れている。
論文 参考訳(メタデータ) (2023-03-11T14:04:58Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
本稿では,各脳ネットワークに最適なGNNアーキテクチャを探索する新しい脳ネットワーク表現フレームワークBN-GNNを提案する。
提案するBN-GNNは,脳ネットワーク解析タスクにおける従来のGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-18T07:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。