論文の概要: Configurable Preference Tuning with Rubric-Guided Synthetic Data
- arxiv url: http://arxiv.org/abs/2506.11702v1
- Date: Fri, 13 Jun 2025 12:17:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 17:50:49.776522
- Title: Configurable Preference Tuning with Rubric-Guided Synthetic Data
- Title(参考訳): Rubric-Guided Synthetic Dataによる設定可能な参照チューニング
- Authors: Víctor Gallego,
- Abstract要約: 本稿では,言語モデルに明示的,人間解釈可能な指示に基づく行動調整機能を持たせるための新しい枠組みを提案する。
トレーニングコード、生成されたデータセット、微調整されたモデルなど、いくつかの実験的な成果物がhttps://github.com/vicgalle/configurable-preference-tuningでリリースされている。
- 参考スコア(独自算出の注目度): 0.6526824510982799
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Models of human feedback for AI alignment, such as those underpinning Direct Preference Optimization (DPO), often bake in a singular, static set of preferences, limiting adaptability. This paper challenges the assumption of monolithic preferences by introducing Configurable Preference Tuning (CPT), a novel framework for endowing language models with the ability to dynamically adjust their behavior based on explicit, human-interpretable directives. CPT leverages synthetically generated preference data, conditioned on system prompts derived from structured, fine-grained rubrics that define desired attributes like writing style. By fine-tuning with these rubric-guided preferences, the LLM learns to modulate its outputs at inference time in response to the system prompt, without retraining. This approach not only offers fine-grained control but also provides a mechanism for modeling more nuanced and context-dependent human feedback. Several experimental artifacts, such as training code, generated datasets and fine-tuned models are released at https://github.com/vicgalle/configurable-preference-tuning
- Abstract(参考訳): AIアライメントのための人間のフィードバックのモデル、例えば、直接選好最適化(DPO)の基盤となっているモデルは、しばしば特異で静的な選好セットで焼かれ、適応性を制限する。
本稿では,言語モデルを実現するための新しいフレームワークであるConfigurable Preference Tuning (CPT)を導入することで,モノリシックな嗜好の仮定に挑戦する。
CPTは、システムプロンプトに条件付けされた合成された好みデータを活用する。
これらのルーリック誘導の好みを微調整することで、LLMはシステムプロンプトに応答して、再学習することなく、推論時に出力を変調する。
このアプローチはきめ細かい制御を提供するだけでなく、よりニュアンスでコンテキストに依存した人間のフィードバックをモデリングするためのメカニズムも提供する。
トレーニングコード、生成されたデータセット、微調整されたモデルなど、いくつかの実験的な成果物がhttps://github.com/vicgalle/configurable-preference-tuningでリリースされている。
関連論文リスト
- PITA: Preference-Guided Inference-Time Alignment for LLM Post-Training [9.093854840532062]
PITAはLLMのトークン生成に直接好みフィードバックを統合する新しいフレームワークである。
PITAは、微調整をせずに、推論時にトークン確率を変更するための、小さな嗜好に基づくガイダンスポリシーを学習する。
我々は,数学的推論や感情分類など,多種多様なタスクにまたがるPITAを評価する。
論文 参考訳(メタデータ) (2025-07-26T21:46:32Z) - Multi-Preference Lambda-weighted Listwise DPO for Small-Scale Model Alignment [5.276657230880984]
大規模言語モデル(LLM)は、幅広い言語タスクに対して強力な一般化を示すが、しばしば人間の好みに反する出力を生成する。
直接最適化選好(DPO)は、二項選好対に対する分類タスクとしてアライメントを扱い、プロセスを単純化する。
我々は、より詳細な人間のフィードバックからモデルを学習できるマルチパラメータLambda-weighted Listwise DPOを提案する。
本手法は, 実世界の展開に適した効率, 制御可能, きめ細かな適応を実現しつつ, 標準DPOのアライメント性能を常に向上させる。
論文 参考訳(メタデータ) (2025-06-24T16:47:17Z) - RankPO: Preference Optimization for Job-Talent Matching [7.385902340910447]
大規模言語モデル(LLM)のための2段階トレーニングフレームワークを提案する。
最初の段階では、実際のマッチングルールから構築されたデータセット上でモデルをトレーニングするために、対照的な学習アプローチが使用される。
第2段階では、AIで計算したペアの選好とモデルを整合させるために、直接選好最適化(DPO)にインスパイアされた、新しい選好に基づく微調整手法を導入する。
論文 参考訳(メタデータ) (2025-03-13T10:14:37Z) - PIPA: Preference Alignment as Prior-Informed Statistical Estimation [57.24096291517857]
本稿では、RLフリーな統一確率的フレームワークであるPIPA(Pior-Informed Preference Alignment)を紹介する。
PIPAはペアデータとアンペアデータの両方に対応し、回答とステップレベルのアノテーションを提供する。
異なる種類の事前情報を統合することにより,PIPA-MとPIPA-Nの2種類のPIPAを開発した。
論文 参考訳(メタデータ) (2025-02-09T04:31:30Z) - Preference Alignment Improves Language Model-Based TTS [76.70693823683091]
選好アライメントアルゴリズムは、報酬モデルの嗜好に合わせてLMを調整し、生成されたコンテンツの望ましさを高める。
1.15B のパラメータ LM に基づく TTS モデルを用いて、嗜好の整合性は常に知性、話者類似性、代用主観的評価スコアを向上することを示した。
論文 参考訳(メタデータ) (2024-09-19T01:58:19Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
既存のペアデータを必要としない、効果的でスケーラブルなトレーニングパラダイムである自己拡張型優先度最適化(SAPO)を導入する。
負の反応を自律的に生成するセルフプレイの概念に基づいて、我々はさらに、データ探索とエクスプロイトを強化するために、非政治的な学習パイプラインを組み込む。
論文 参考訳(メタデータ) (2024-05-31T14:21:04Z) - Self-Play Preference Optimization for Language Model Alignment [75.83359213697854]
近年の進歩は、嗜好の確率で直接作業することで、人間の嗜好をより正確に反映できることを示している。
本稿では,言語モデルアライメントのためのセルフプレイ方式を提案する。
我々の手法はSPPO(Self-Play Preference Optimization)と呼ばれ、繰り返しポリシー更新を利用してナッシュ均衡を確実に近似する。
論文 参考訳(メタデータ) (2024-05-01T17:59:20Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) は、同一のプロンプトと関連するプロンプトの両方から、より多く、あまり好まれない応答を識別するように設計されている。
RPOは、大きな言語モデルをユーザの好みに合わせて調整し、トレーニングプロセスにおける適応性を改善する優れた能力を示している。
論文 参考訳(メタデータ) (2024-02-12T22:47:57Z) - Linear Alignment: A Closed-form Solution for Aligning Human Preferences without Tuning and Feedback [70.32795295142648]
リニアアライメントは、言語モデルと人間の好みを1つの推論ステップで整列する新しいアルゴリズムである。
一般的な選好データセットとパーソナライズされた選好データセットの実験により、線形アライメントはLLMアライメントの性能と効率を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2024-01-21T10:46:23Z) - Parameter-Efficient Tuning Helps Language Model Alignment [57.27390187540737]
これまでは主に強化学習(RLHF)と直接選好最適化(DPO)を採用してきた。
コントロール可能な生成は、データフォーマットに関して、より柔軟性を提供します。
パラメータ効率調整(MEET)を併用したアライメントMEntでは,制御トークンの品質が向上する。
論文 参考訳(メタデータ) (2023-10-01T23:27:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。