Relational GNNs Cannot Learn $C_2$ Features for Planning
- URL: http://arxiv.org/abs/2506.11721v1
- Date: Fri, 13 Jun 2025 12:35:56 GMT
- Title: Relational GNNs Cannot Learn $C_2$ Features for Planning
- Authors: Dillon Z. Chen,
- Abstract summary: Graph Neural Networks (R-GNNs) are an approach for learning value functions that can generalise to unseen problems from a given planning domain.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Relational Graph Neural Networks (R-GNNs) are a GNN-based approach for learning value functions that can generalise to unseen problems from a given planning domain. R-GNNs were theoretically motivated by the well known connection between the expressive power of GNNs and $C_2$, first-order logic with two variables and counting. In the context of planning, $C_2$ features refer to the set of formulae in $C_2$ with relations defined by the unary and binary predicates of a planning domain. Some planning domains exhibit optimal value functions that can be decomposed as arithmetic expressions of $C_2$ features. We show that, contrary to empirical results, R-GNNs cannot learn value functions defined by $C_2$ features. We also identify prior GNN architectures for planning that may better learn value functions defined by $C_2$ features.
Related papers
- Learning More Expressive General Policies for Classical Planning Domains [15.574717738100727]
GNN-based approaches for learning general policies across planning domains are limited by the expressive power of $C express$.<n>This limitation can be overcome by transitioning to $k$-GNNs, for $k$=3, wherein object embeddings are substituted with triplet embeddings.<n>Experiments show clear gains of R-GNN[$1$] over the plain R-GNNs, also over Edge Transformers that also approximate $3$-GNNs.
arXiv Detail & Related papers (2024-03-18T12:42:53Z) - Calibrate and Boost Logical Expressiveness of GNN Over Multi-Relational
and Temporal Graphs [8.095679736030146]
We investigate $mathcalFOC$NN, a fragment of first-order logic with two variables and counting quantifiers.
We propose a simple graph transformation technique, akin to a preprocessing step, which can be executed in linear time.
Our results consistently demonstrate that R$2$-GNN with the graph transformation outperforms the baseline methods on both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-11-03T00:33:24Z) - How Graph Neural Networks Learn: Lessons from Training Dynamics [80.41778059014393]
We study the training dynamics in function space of graph neural networks (GNNs)
We find that the gradient descent optimization of GNNs implicitly leverages the graph structure to update the learned function.
This finding offers new interpretable insights into when and why the learned GNN functions generalize.
arXiv Detail & Related papers (2023-10-08T10:19:56Z) - On the Computational Complexity and Formal Hierarchy of Second Order
Recurrent Neural Networks [59.85314067235965]
We extend the theoretical foundation for the $2nd$-order recurrent network ($2nd$ RNN)
We prove there exists a class of a $2nd$ RNN that is Turing-complete with bounded time.
We also demonstrate that $2$nd order RNNs, without memory, outperform modern-day models such as vanilla RNNs and gated recurrent units in recognizing regular grammars.
arXiv Detail & Related papers (2023-09-26T06:06:47Z) - The Descriptive Complexity of Graph Neural Networks [2.6728900378310514]
We show that graph queries can be computed by a bounded-size family of graph neural networks (GNNs)<n>GNNs are definable in the guarded fragment of first-order logic with counting and with built-in relations.<n>We show that queries computable by a single GNN with piecewise linear activations and rational weights are definable in GFO+C without built-in relations.
arXiv Detail & Related papers (2023-03-08T14:32:59Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Learning General Optimal Policies with Graph Neural Networks: Expressive
Power, Transparency, and Limits [18.718037284357834]
We train a simple GNN in a supervised manner to approximate the optimal value function $V*(s)$ of a number of sample states $s$.
It is observed that general optimal policies are obtained in domains where general optimal value functions can be defined with $C$ features but not in those requiring more expressive $C_3$ features.
arXiv Detail & Related papers (2021-09-21T12:22:29Z) - Graph Neural Networks with Local Graph Parameters [1.8600631687568656]
Local graph parameters can be added to any Graph Neural Networks (GNNs) architecture.
Our results connect GNNs with deep results in finite model theory and finite variable logics.
arXiv Detail & Related papers (2021-06-12T07:43:51Z) - Learning to Execute Programs with Instruction Pointer Attention Graph
Neural Networks [55.98291376393561]
Graph neural networks (GNNs) have emerged as a powerful tool for learning software engineering tasks.
Recurrent neural networks (RNNs) are well-suited to long sequential chains of reasoning, but they do not naturally incorporate program structure.
We introduce a novel GNN architecture, the Instruction Pointer Attention Graph Neural Networks (IPA-GNN), which improves systematic generalization on the task of learning to execute programs.
arXiv Detail & Related papers (2020-10-23T19:12:30Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs [95.63153473559865]
Graph Neural Networks (GNNs) are emerging machine learning models on graphs.
Most existing GNN models in practice are shallow and essentially feature-centric.
We show empirically and analytically that the existing shallow GNNs cannot preserve graph structures well.
We propose Eigen-GNN, a plug-in module to boost GNNs ability in preserving graph structures.
arXiv Detail & Related papers (2020-06-08T02:47:38Z) - Evaluating Logical Generalization in Graph Neural Networks [59.70452462833374]
We study the task of logical generalization using graph neural networks (GNNs)
Our benchmark suite, GraphLog, requires that learning algorithms perform rule induction in different synthetic logics.
We find that the ability for models to generalize and adapt is strongly determined by the diversity of the logical rules they encounter during training.
arXiv Detail & Related papers (2020-03-14T05:45:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.