Bias and Identifiability in the Bounded Confidence Model
- URL: http://arxiv.org/abs/2506.11751v1
- Date: Fri, 13 Jun 2025 13:04:29 GMT
- Title: Bias and Identifiability in the Bounded Confidence Model
- Authors: Claudio Borile, Jacopo Lenti, Valentina Ghidini, Corrado Monti, Gianmarco De Francisci Morales,
- Abstract summary: bounded confidence models describe how a population can reach consensus, fragmentation, or polarization.<n> estimation of model parameters is a key aspect, and maximum likelihood estimation provides a principled way to tackle it.<n>Our results show how the analysis of the likelihood function is a fruitful approach for better understanding the pitfalls and possibilities of estimating the parameters of opinion dynamics models.
- Score: 4.660328753262075
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Opinion dynamics models such as the bounded confidence models (BCMs) describe how a population can reach consensus, fragmentation, or polarization, depending on a few parameters. Connecting such models to real-world data could help understanding such phenomena, testing model assumptions. To this end, estimation of model parameters is a key aspect, and maximum likelihood estimation provides a principled way to tackle it. Here, our goal is to outline the properties of statistical estimators of the two key BCM parameters: the confidence bound and the convergence rate. We find that their maximum likelihood estimators present different characteristics: the one for the confidence bound presents a small-sample bias but is consistent, while the estimator of the convergence rate shows a persistent bias. Moreover, the joint parameter estimation is affected by identifiability issues for specific regions of the parameter space, as several local maxima are present in the likelihood function. Our results show how the analysis of the likelihood function is a fruitful approach for better understanding the pitfalls and possibilities of estimating the parameters of opinion dynamics models, and more in general, agent-based models, and for offering formal guarantees for their calibration.
Related papers
- Debiased Ill-Posed Regression [8.495265117285223]
We propose a debiased estimation strategy based on the influence function of a modification of the projected error.<n>Our proposed estimator possesses a second-order bias with respect to the involved nuisance functions.
arXiv Detail & Related papers (2025-05-27T06:47:33Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
This thesis is a series of independent contributions to statistics unified by a model-free perspective.<n>The first chapter elaborates on how a model-free perspective can be used to formulate flexible methods that leverage prediction techniques from machine learning.<n>The second chapter studies the concept of local independence, which describes whether the evolution of one process is directly influenced by another.
arXiv Detail & Related papers (2025-02-11T19:24:09Z) - Variational Inference of Parameters in Opinion Dynamics Models [9.51311391391997]
This work uses variational inference to estimate the parameters of an opinion dynamics ABM.
We transform the inference process into an optimization problem suitable for automatic differentiation.
Our approach estimates both macroscopic (bounded confidence intervals and backfire thresholds) and microscopic ($200$ categorical, agent-level roles) more accurately than simulation-based and MCMC methods.
arXiv Detail & Related papers (2024-03-08T14:45:18Z) - On the Properties and Estimation of Pointwise Mutual Information Profiles [49.877314063833296]
The pointwise mutual information profile, or simply profile, is the distribution of pointwise mutual information for a given pair of random variables.
We introduce a novel family of distributions, Bend and Mix Models, for which the profile can be accurately estimated using Monte Carlo methods.
arXiv Detail & Related papers (2023-10-16T10:02:24Z) - Likelihood-Based Methods Improve Parameter Estimation in Opinion
Dynamics Models [6.138671548064356]
We show that a maximum likelihood approach for parameter estimation in agent-based models (ABMs) of opinion dynamics outperforms the typical simulation-based approach.
In contrast, likelihood-based approaches derive a likelihood function that connects the unknown parameters to the observed data in a statistically principled way.
Our experimental results show that the maximum likelihood estimates are up to 4x more accurate and require up to 200x less computational time.
arXiv Detail & Related papers (2023-10-04T12:29:37Z) - Probabilistic Precision and Recall Towards Reliable Evaluation of
Generative Models [7.770029179741429]
We propose P-precision and P-recall (PP&PR), based on a probabilistic approach that address the problems.
We show that our PP&PR provide more reliable estimates for comparing fidelity and diversity than the existing metrics.
arXiv Detail & Related papers (2023-09-04T13:19:17Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
The intrinsic ill-posedness and ordinal-sensitive nature of monocular depth estimation (MDE) models pose major challenges to the estimation of uncertainty degree.
We propose to model the uncertainty of MDE models from the perspective of the inherent probability distributions.
By simply introducing additional training regularization terms, our model, with surprisingly simple formations and without requiring extra modules or multiple inferences, can provide uncertainty estimations with state-of-the-art reliability.
arXiv Detail & Related papers (2023-07-19T12:11:15Z) - Bayesian Hierarchical Models for Counterfactual Estimation [12.159830463756341]
We propose a probabilistic paradigm to estimate a diverse set of counterfactuals.
We treat the perturbations as random variables endowed with prior distribution functions.
A gradient based sampler with superior convergence characteristics efficiently computes the posterior samples.
arXiv Detail & Related papers (2023-01-21T00:21:11Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.