論文の概要: Martingale Posterior Neural Networks for Fast Sequential Decision Making
- arxiv url: http://arxiv.org/abs/2506.11898v2
- Date: Wed, 08 Oct 2025 10:12:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-10 17:54:14.561734
- Title: Martingale Posterior Neural Networks for Fast Sequential Decision Making
- Title(参考訳): Martingale Posterior Neural Networks for Fast Sequential Decision Making (特集:情報ネットワーク)
- Authors: Gerardo Duran-Martin, Leandro Sánchez-Betancourt, Álvaro Cartea, Kevin Murphy,
- Abstract要約: ニューラルネットワークパラメータのオンライン学習とベイジアンシーケンシャル意思決定のためのスケーラブルアルゴリズムを導入する。
我々は、ニューラルネットワークでパラメータ化し、受信した観測を逐次更新するワンステップ後部予測と直接連携する。
我々のアルゴリズムは、完全にオンラインで再生不要な環境で動作し、コストのかかる後続サンプリングを伴わずに、原理化された不確実性定量化を提供する。
- 参考スコア(独自算出の注目度): 2.5145580509684398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce scalable algorithms for online learning of neural network parameters and Bayesian sequential decision making. Unlike classical Bayesian neural networks, which induce predictive uncertainty through a posterior over model parameters, our methods adopt a predictive-first perspective based on martingale posteriors. In particular, we work directly with the one-step-ahead posterior predictive, which we parameterize with a neural network and update sequentially with incoming observations. This decouples Bayesian decision-making from parameter-space inference: we sample from the posterior predictive for decision making, and update the parameters of the posterior predictive via fast, frequentist Kalman-filter-like recursions. Our algorithms operate in a fully online, replay-free setting, providing principled uncertainty quantification without costly posterior sampling. Empirically, they achieve competitive performance-speed trade-offs in non-stationary contextual bandits and Bayesian optimization, offering 10-100 times faster inference than classical Thompson sampling while maintaining comparable or superior decision performance.
- Abstract(参考訳): ニューラルネットワークパラメータのオンライン学習とベイジアンシーケンシャル意思決定のためのスケーラブルアルゴリズムを導入する。
モデルパラメータによる予測不確実性を誘導する古典的ベイズニューラルネットワークとは異なり、本手法はマーチンゲール後部に基づく予測優先の視点を採用する。
特に、ニューラルネットワークでパラメータ化し、受信した観測を逐次更新するワンステップ後部予測と直接連携する。
このことはベイズ的決定をパラメータ空間推論から切り離し、意思決定のために後部予測からサンプリングし、高速で頻繁なカルマンフィルタのような再帰を通じて後部予測のパラメータを更新する。
我々のアルゴリズムは、完全にオンラインで再生不要な環境で動作し、コストのかかる後続サンプリングを伴わずに、原理化された不確実性定量化を提供する。
実証的には、非定常的文脈帯域とベイズ最適化における競合的な性能-速度トレードオフを実現し、古典的なトンプソンサンプリングよりも10-100倍高速な推論を提供しながら、同等または優れた決定性能を維持している。
関連論文リスト
- BAPE: Learning an Explicit Bayes Classifier for Long-tailed Visual Recognition [78.70453964041718]
現在のディープラーニングアルゴリズムは通常、後部確率を簡易に推定することで最適分類器を解く。
この単純な手法は、厳密にバランスのとれた学術ベンチマークデータセットに有効であることが証明されている。
しかし、これは現実世界の長い尾のデータ分布には適用できない。
本稿では,データ分布のより正確な理論的推定を行う新しい手法(BAPE)を提案する。
論文 参考訳(メタデータ) (2025-06-29T15:12:50Z) - Variational Bayesian Bow tie Neural Networks with Shrinkage [0.276240219662896]
我々は、標準フィードフォワード修正ニューラルネットワークの緩和版を構築した。
我々は、条件付き線形およびガウス的モデルをレンダリングするために、Polya-Gammaデータ拡張トリックを用いる。
層間における分布仮定や独立性を回避する変分推論アルゴリズムを導出する。
論文 参考訳(メタデータ) (2024-11-17T17:36:30Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
変分推論において、ベイズモデルの利点は、真の後続分布を正確に捉えることに依存する。
複雑な多重モーダルおよび相関後部を近似するのに適した暗黙分布を特定するニューラルサンプリング手法を提案する。
提案手法では,ニューラルネットワークを局所的に線形化することにより,暗黙分布を用いた近似推論の新たなバウンダリを導入する。
論文 参考訳(メタデータ) (2023-10-10T14:06:56Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
非定常データストリームから非線形関数のパラメータを推定するための効率的なオンライン近似ベイズ推定アルゴリズムを提案する。
この方法は拡張カルマンフィルタ (EKF) に基づいているが、新しい低ランク+斜角行列分解法を用いている。
変分推論に基づく手法とは対照的に,本手法は完全に決定論的であり,ステップサイズチューニングを必要としない。
論文 参考訳(メタデータ) (2023-05-31T03:48:49Z) - Improved uncertainty quantification for neural networks with Bayesian
last layer [0.0]
不確実性定量化は機械学習において重要な課題である。
本稿では,BLL を用いた NN の対数乗算可能性の再構成を行い,バックプロパゲーションを用いた効率的なトレーニングを実現する。
論文 参考訳(メタデータ) (2023-02-21T20:23:56Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Distributed Sketching for Randomized Optimization: Exact
Characterization, Concentration and Lower Bounds [54.51566432934556]
我々はヘシアンの形成が困難である問題に対する分散最適化法を検討する。
ランダム化されたスケッチを利用して、問題の次元を減らし、プライバシを保ち、非同期分散システムにおけるストラグラーレジリエンスを改善します。
論文 参考訳(メタデータ) (2022-03-18T05:49:13Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
サンプリングフリー変動推論のための後方近似のより効率的なパラメータ化を提案する。
提案手法は,標準回帰問題に対する競合的な結果をもたらし,大規模画像分類タスクに適している。
論文 参考訳(メタデータ) (2021-03-15T16:16:18Z) - Bayesian Nested Neural Networks for Uncertainty Calibration and Adaptive
Compression [40.35734017517066]
ネストネットワーク(Nested Network)またはスリムブルネットワーク(Slimmable Network)は、テスト期間中にアーキテクチャを即座に調整できるニューラルネットワークである。
最近の研究は、トレーニング中に重要なレイヤのノードを順序付けできる"ネストされたドロップアウト"層に焦点を当てている。
論文 参考訳(メタデータ) (2021-01-27T12:34:58Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。