論文の概要: An Efficient Compression of Deep Neural Network Checkpoints Based on Prediction and Context Modeling
- arxiv url: http://arxiv.org/abs/2506.12000v1
- Date: Fri, 13 Jun 2025 17:54:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 17:50:49.91108
- Title: An Efficient Compression of Deep Neural Network Checkpoints Based on Prediction and Context Modeling
- Title(参考訳): 予測と文脈モデルに基づくディープニューラルネットワークチェックポイントの効率的な圧縮
- Authors: Yuriy Kim, Evgeny Belyaev,
- Abstract要約: 本稿では,予め保存したチェックポイントの値を用いて,予測に基づく圧縮手法を提案する。
実験の結果,本手法は,復元されたチェックポイントからほぼロスレスなトレーニングリカバリを実現するとともに,ビットサイズの大幅な削減を実現していることがわかった。
- 参考スコア(独自算出の注目度): 1.7495213911983414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper is dedicated to an efficient compression of weights and optimizer states (called checkpoints) obtained at different stages during a neural network training process. First, we propose a prediction-based compression approach, where values from the previously saved checkpoint are used for context modeling in arithmetic coding. Second, in order to enhance the compression performance, we also propose to apply pruning and quantization of the checkpoint values. Experimental results show that our approach achieves substantial bit size reduction, while enabling near-lossless training recovery from restored checkpoints, preserving the model's performance and making it suitable for storage-limited environments.
- Abstract(参考訳): 本稿では,ニューラルネットワークのトレーニング過程において,異なる段階で得られた重みと最適状態(チェックポイントと呼ばれる)の効率的な圧縮に着目する。
まず,予測に基づく圧縮手法を提案する。ここでは,予め保存したチェックポイントの値を用いて,算術的符号化におけるコンテキストモデリングを行う。
第二に、圧縮性能を向上させるために、チェックポイント値のプルーニングと量子化を適用することを提案する。
実験結果から,本手法は,復元されたチェックポイントからほぼロスレスなトレーニングリカバリを実現し,モデルの性能を保ち,ストレージ限定環境に適合することを示す。
関連論文リスト
- Reducing Storage of Pretrained Neural Networks by Rate-Constrained Quantization and Entropy Coding [56.066799081747845]
成長を続けるニューラルネットワークのサイズは、リソースに制約のあるデバイスに深刻な課題をもたらす。
本稿では,レートアウェア量子化とエントロピー符号化を組み合わせた学習後圧縮フレームワークを提案する。
この方法では非常に高速な復号化が可能であり、任意の量子化グリッドと互換性がある。
論文 参考訳(メタデータ) (2025-05-24T15:52:49Z) - Choose Your Model Size: Any Compression by a Single Gradient Descent [9.074689052563878]
イテレーティブ・プルーニング(ACIP)による圧縮について紹介する。
ACIPは、単一の勾配降下ランから圧縮性能トレードオフを決定するアルゴリズム的なアプローチである。
本稿では,ACIPが共通量子化に基づく圧縮手法をシームレスに補完することを示す。
論文 参考訳(メタデータ) (2025-02-03T18:40:58Z) - A Fresh Take on Stale Embeddings: Improving Dense Retriever Training with Corrector Networks [81.2624272756733]
密集検索では、ディープエンコーダは入力とターゲットの両方に埋め込みを提供する。
我々は、古いキャッシュされたターゲット埋め込みを調整できる小さなパラメトリック補正ネットワークを訓練する。
私たちのアプローチは、トレーニング中にターゲット埋め込み更新が行われなくても、最先端の結果と一致します。
論文 参考訳(メタデータ) (2024-09-03T13:29:13Z) - Shapley Pruning for Neural Network Compression [63.60286036508473]
この研究はShapley値近似を示し、ニューラルネットワーク圧縮の費用対効果の観点から比較分析を行う。
提案した規範的ランキングとその近似は、最先端のネットワーク圧縮を得る実用的な結果を示す。
論文 参考訳(メタデータ) (2024-07-19T11:42:54Z) - Inshrinkerator: Compressing Deep Learning Training Checkpoints via Dynamic Quantization [5.648270790530862]
最先端のアプローチには、結果のモデル品質(精度)と圧縮比とのトレードオフを引き起こす、損失のあるモデル圧縮機構が含まれる。
モデル重みの圧縮に対する感度がトレーニング中に変化し、異なる重みが異なる量子化レベルから恩恵を受けることを重要視する。
本稿では,この変動を利用した非一様量子化手法,最適な量子化構成を動的に見つける効率的な探索機構,重みを再構成してチェックポイント差を最小限に抑える量子化対応デルタ圧縮機構を提案する。
論文 参考訳(メタデータ) (2023-06-20T18:00:31Z) - Towards Optimal Compression: Joint Pruning and Quantization [1.191194620421783]
本稿では,FITCompressについて紹介する。FITCompressは層単位での混合精度の量子化と非構造化プルーニングを組み合わせた新しい手法である。
コンピュータビジョンと自然言語処理ベンチマークの実験により,提案手法が優れた圧縮性能のトレードオフを実現することを示す。
論文 参考訳(メタデータ) (2023-02-15T12:02:30Z) - Optimal Brain Compression: A Framework for Accurate Post-Training
Quantization and Pruning [29.284147465251685]
重み付けと量子化の両方を統一した環境でカバーする新しい圧縮フレームワークを提案する。
既存のポストトレーニング手法の圧縮精度トレードオフにより, 大幅な改善が期待できることを示す。
論文 参考訳(メタデータ) (2022-08-24T14:33:35Z) - Estimating the Resize Parameter in End-to-end Learned Image Compression [50.20567320015102]
本稿では,最近の画像圧縮モデルの速度歪みトレードオフをさらに改善する検索自由化フレームワークについて述べる。
提案手法により,Bjontegaard-Deltaレート(BD-rate)を最大10%向上させることができる。
論文 参考訳(メタデータ) (2022-04-26T01:35:02Z) - Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [87.54604263202941]
本稿では,従来の推定値の修正に部分的レイヤを反復的に活用する,小さなディープニューラルネットワークを提案する。
学習したゲーティング基準を用いて、ウェイトシェアリングループから抜け出すかどうかを判断し、モデルにサンプルごとの適応を可能にする。
提案手法は,広く使用されているベンチマークの精度と効率の両面から,最先端の2D/3Dハンドポーズ推定手法より一貫して優れている。
論文 参考訳(メタデータ) (2021-11-11T23:31:34Z) - Compact representations of convolutional neural networks via weight
pruning and quantization [63.417651529192014]
本稿では、音源符号化に基づく畳み込みニューラルネットワーク(CNN)の新しいストレージフォーマットを提案し、重み付けと量子化の両方を活用する。
我々は、全接続層で0.6%、ネットワーク全体で5.44%のスペース占有率を削減し、最低でもベースラインと同じくらいの競争力を発揮する。
論文 参考訳(メタデータ) (2021-08-28T20:39:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。