SIMSHIFT: A Benchmark for Adapting Neural Surrogates to Distribution Shifts
- URL: http://arxiv.org/abs/2506.12007v1
- Date: Fri, 13 Jun 2025 17:56:49 GMT
- Title: SIMSHIFT: A Benchmark for Adapting Neural Surrogates to Distribution Shifts
- Authors: Paul Setinek, Gianluca Galletti, Thomas Gross, Dominik Schnürer, Johannes Brandstetter, Werner Zellinger,
- Abstract summary: Domain Adaptation (DA) techniques have been widely used in vision and language processing to generalize from limited information about unseen configurations.<n>We introduce SIMSHIFT, a novel benchmark dataset and evaluation suite composed of four industrial simulation tasks.<n>The goal is to accurately predict target simulations without access to ground truth simulation data.
- Score: 10.815077158164684
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural surrogates for Partial Differential Equations (PDEs) often suffer significant performance degradation when evaluated on unseen problem configurations, such as novel material types or structural dimensions. Meanwhile, Domain Adaptation (DA) techniques have been widely used in vision and language processing to generalize from limited information about unseen configurations. In this work, we address this gap through two focused contributions. First, we introduce SIMSHIFT, a novel benchmark dataset and evaluation suite composed of four industrial simulation tasks: hot rolling, sheet metal forming, electric motor design and heatsink design. Second, we extend established domain adaptation methods to state of the art neural surrogates and systematically evaluate them. These approaches use parametric descriptions and ground truth simulations from multiple source configurations, together with only parametric descriptions from target configurations. The goal is to accurately predict target simulations without access to ground truth simulation data. Extensive experiments on SIMSHIFT highlight the challenges of out of distribution neural surrogate modeling, demonstrate the potential of DA in simulation, and reveal open problems in achieving robust neural surrogates under distribution shifts in industrially relevant scenarios. Our codebase is available at https://github.com/psetinek/simshift
Related papers
- Learning Mappings in Mesh-based Simulations [0.0]
We introduce a novel and parameter-free encoding scheme that aggregates footprints of points onto grid vertices and yields information-rich grid representations of the topology.<n> Specifically, we integrate our encoder with a uniquely designed UNet (E-UNet) and benchmark its performance against Fourier- and transformer-based models across diverse 2D and 3D problems.<n>Our proposed framework offers a practical alternative to both primitive and computationally intensive encoding schemes; supporting broad adoption in computational science applications involving mesh-based simulations.
arXiv Detail & Related papers (2025-06-14T22:43:13Z) - A Multimodal PDE Foundation Model for Prediction and Scientific Text Descriptions [13.48986376824454]
PDE foundation models utilize neural networks to train approximations to multiple differential equations simultaneously.<n>We propose a novel multimodal deep learning approach that leverages a transformer-based architecture to approximate solution operators.<n>Our approach generates interpretable scientific text descriptions, offering deeper insights into the underlying dynamics and solution properties.
arXiv Detail & Related papers (2025-02-09T20:50:28Z) - GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.<n>We leverage continuum mechanics and treat each kernel as a Center of Mass System (CMS) that represents continuous piece of matter.<n>In addition, GausSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a software spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.<n>We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software, once deployed in hardware.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - Active Learning for Computationally Efficient Distribution of Binary
Evolution Simulations [0.19359975080269876]
We present a new active learning algorithm, psy-cris, which uses machine learning in the data-gathering process to adaptively and iteratively select targeted simulations to run.
We test psy-cris on a toy problem and find the resulting training sets require fewer simulations for accurate classification and regression than either regular or randomly sampled grids.
arXiv Detail & Related papers (2022-03-30T21:36:32Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - Augmenting Differentiable Simulators with Neural Networks to Close the
Sim2Real Gap [15.1962264049463]
We present a differentiable simulation architecture for articulated rigid-body dynamics that enables the augmentation of analytical models with neural networks at any point of the computation.
arXiv Detail & Related papers (2020-07-12T17:27:11Z) - Alternating ConvLSTM: Learning Force Propagation with Alternate State
Updates [29.011464047344614]
We introduce the alternating convolutional Long Short-Term Memory (Alt-ConvLSTM) that models the force propagation mechanisms in a deformable object with near-uniform material properties.
We demonstrate how this novel scheme imitates the alternate updates of the first and second-order terms in the forward method of numerical PDE solvers.
We validate our Alt-ConvLSTM on human soft tissue simulation with thousands of particles and consistent body pose changes.
arXiv Detail & Related papers (2020-06-14T06:43:33Z) - Recent Developments Combining Ensemble Smoother and Deep Generative
Networks for Facies History Matching [58.720142291102135]
This research project focuses on the use of autoencoders networks to construct a continuous parameterization for facies models.
We benchmark seven different formulations, including VAE, generative adversarial network (GAN), Wasserstein GAN, variational auto-encoding GAN, principal component analysis (PCA) with cycle GAN, PCA with transfer style network and VAE with style loss.
arXiv Detail & Related papers (2020-05-08T21:32:42Z) - Zero-Shot Reinforcement Learning with Deep Attention Convolutional
Neural Networks [12.282277258055542]
We show that a deep attention convolutional neural network (DACNN) with specific visual sensor configuration performs as well as training on a dataset with high domain and parameter variation at lower computational complexity.
Our new architecture adapts perception with respect to the control objective, resulting in zero-shot learning without pre-training a perception network.
arXiv Detail & Related papers (2020-01-02T19:41:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.