論文の概要: Military AI Cyber Agents (MAICAs) Constitute a Global Threat to Critical Infrastructure
- arxiv url: http://arxiv.org/abs/2506.12094v1
- Date: Thu, 12 Jun 2025 09:51:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:45.100524
- Title: Military AI Cyber Agents (MAICAs) Constitute a Global Threat to Critical Infrastructure
- Title(参考訳): 軍用AIサイバーエージェント(MAICA)は、臨界インフラに対するグローバルな脅威を構成する
- Authors: Timothy Dubber, Seth Lazar,
- Abstract要約: 地政学とサイバー空間の性質がMAICAを破滅的なリスクにする理由を説明する。
脅威を抑えるために、政治的、防衛的なAIと類似のレジリエンス対策を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper argues that autonomous AI cyber-weapons - Military-AI Cyber Agents (MAICAs) - create a credible pathway to catastrophic risk. It sets out the technical feasibility of MAICAs, explains why geopolitics and the nature of cyberspace make MAICAs a catastrophic risk, and proposes political, defensive-AI and analogue-resilience measures to blunt the threat.
- Abstract(参考訳): 本稿は、自律型AIサイバー兵器 - Military-AI Cyber Agents (MAICAs) - が破滅的なリスクへの信頼できる経路を生み出すことを主張する。
MAICAの技術的実現可能性を明らかにし、なぜジオポリティクスとサイバー空間の性質がMAICAを破滅的なリスクにするのかを説明し、脅威を抑えるために政治的、防衛的、アナログ的抵抗的な措置を提案する。
関連論文リスト
- Autonomous AI-based Cybersecurity Framework for Critical Infrastructure: Real-Time Threat Mitigation [1.4999444543328293]
我々は、リアルタイムの脆弱性検出、脅威モデリング、自動修復を強化するためのハイブリッドAI駆動型サイバーセキュリティフレームワークを提案する。
我々の発見は、新興のサイバー脅威に対する重要なインフラシステムのセキュリティとレジリエンスを強化するための実用的な洞察を提供する。
論文 参考訳(メタデータ) (2025-07-10T04:17:29Z) - AI threats to national security can be countered through an incident regime [55.2480439325792]
我々は、AIシステムからの潜在的な国家安全保障脅威に対抗することを目的とした、法的に義務付けられたポストデプロイAIインシデントシステムを提案する。
提案したAIインシデント体制は,3段階に分けられる。第1フェーズは,‘AIインシデント’とみなすような,新たな運用方法を中心に展開される。
第2フェーズと第3フェーズでは、AIプロバイダが政府機関にインシデントを通知し、政府機関がAIプロバイダのセキュリティおよび安全手順の修正に関与するべきだ、と説明されている。
論文 参考訳(メタデータ) (2025-03-25T17:51:50Z) - Superintelligence Strategy: Expert Version [64.7113737051525]
AI開発を不安定にすることで、大国間の対立の可能性が高まる可能性がある。
スーパーインテリジェンス — ほぼすべての認知タスクにおいて、AIが人間よりもはるかに優れている — が、AI研究者によって期待されている。
本稿では,相互保証型AI誤動作の概念を紹介する。
論文 参考訳(メタデータ) (2025-03-07T17:53:24Z) - Agentic AI and the Cyber Arms Race [3.0198881680567635]
エージェントAIは、アタッカーやディフェンダーがAIエージェントを利用して人間を強化し、共通のタスクを自動化することによって、サイバーセキュリティの世界を変えつつある。
本稿では,エージェントAIがより強力になるにつれて,サイバー戦争とグローバル政治がもたらす意味を考察し,現在最も豊富なアクターにのみ利用可能な能力の広範な普及を可能にする。
論文 参考訳(メタデータ) (2025-02-10T16:06:29Z) - Cyber Shadows: Neutralizing Security Threats with AI and Targeted Policy Measures [0.0]
サイバー脅威は個人、組織、社会レベルでリスクを引き起こす。
本稿では,AI駆動型ソリューションと政策介入を統合した包括的サイバーセキュリティ戦略を提案する。
論文 参考訳(メタデータ) (2025-01-03T09:26:50Z) - Position: Mind the Gap-the Growing Disconnect Between Established Vulnerability Disclosure and AI Security [56.219994752894294]
我々は、AIセキュリティレポートに既存のプロセスを適用することは、AIシステムの特徴的な特徴に対する根本的な欠点のために失敗する運命にあると主張している。
これらの欠点に対処する私たちの提案に基づき、AIセキュリティレポートへのアプローチと、新たなAIパラダイムであるAIエージェントが、AIセキュリティインシデント報告の進展をさらに強化する方法について論じる。
論文 参考訳(メタデータ) (2024-12-19T13:50:26Z) - Is Generative AI the Next Tactical Cyber Weapon For Threat Actors? Unforeseen Implications of AI Generated Cyber Attacks [0.0]
本稿では,AIの誤用によるエスカレート脅威,特にLarge Language Models(LLMs)の使用について述べる。
一連の制御された実験を通じて、これらのモデルがどのようにして倫理的およびプライバシー保護を回避し、効果的にサイバー攻撃を発生させるかを実証する。
私たちはまた、サイバー攻撃の自動化と実行のために特別に設計されたカスタマイズされた微調整のLLMであるOccupy AIを紹介します。
論文 参考訳(メタデータ) (2024-08-23T02:56:13Z) - AI-Powered Autonomous Weapons Risk Geopolitical Instability and Threaten AI Research [6.96356867602455]
自律兵器システム(AWS)開発における機械学習の最近の採用は、地政学的な安定性とAI研究におけるアイデアの自由交換に深刻なリスクをもたらす、と我々は主張する。
MLはすでに、多くの戦場で、人間の兵士のためのAWSの代替を可能にしている。
さらに、AWSの軍事的価値は、AIによる軍備競争の投機と、AI研究に対する国家安全保障上の制限の誤った適用を提起する。
論文 参考訳(メタデータ) (2024-05-03T05:19:45Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。