DRIFT: Dynamic Rule-Based Defense with Injection Isolation for Securing LLM Agents
- URL: http://arxiv.org/abs/2506.12104v1
- Date: Fri, 13 Jun 2025 05:01:09 GMT
- Title: DRIFT: Dynamic Rule-Based Defense with Injection Isolation for Securing LLM Agents
- Authors: Hao Li, Xiaogeng Liu, Hung-Chun Chiu, Dianqi Li, Ning Zhang, Chaowei Xiao,
- Abstract summary: Large Language Models (LLMs) are increasingly central to agentic systems due to their strong reasoning and planning capabilities.<n>This interaction also introduces the risk of prompt injection attacks, where malicious inputs from external sources can mislead the agent's behavior.<n>We propose a Dynamic Rule-based Isolation Framework for Trustworthy agentic systems, which enforces both control and data-level constraints.
- Score: 33.40201949055383
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are increasingly central to agentic systems due to their strong reasoning and planning capabilities. By interacting with external environments through predefined tools, these agents can carry out complex user tasks. Nonetheless, this interaction also introduces the risk of prompt injection attacks, where malicious inputs from external sources can mislead the agent's behavior, potentially resulting in economic loss, privacy leakage, or system compromise. System-level defenses have recently shown promise by enforcing static or predefined policies, but they still face two key challenges: the ability to dynamically update security rules and the need for memory stream isolation. To address these challenges, we propose DRIFT, a Dynamic Rule-based Isolation Framework for Trustworthy agentic systems, which enforces both control- and data-level constraints. A Secure Planner first constructs a minimal function trajectory and a JSON-schema-style parameter checklist for each function node based on the user query. A Dynamic Validator then monitors deviations from the original plan, assessing whether changes comply with privilege limitations and the user's intent. Finally, an Injection Isolator detects and masks any instructions that may conflict with the user query from the memory stream to mitigate long-term risks. We empirically validate the effectiveness of DRIFT on the AgentDojo benchmark, demonstrating its strong security performance while maintaining high utility across diverse models -- showcasing both its robustness and adaptability.
Related papers
- OpenAgentSafety: A Comprehensive Framework for Evaluating Real-World AI Agent Safety [58.201189860217724]
We introduce OpenAgentSafety, a comprehensive framework for evaluating agent behavior across eight critical risk categories.<n>Unlike prior work, our framework evaluates agents that interact with real tools, including web browsers, code execution environments, file systems, bash shells, and messaging platforms.<n>It combines rule-based analysis with LLM-as-judge assessments to detect both overt and subtle unsafe behaviors.
arXiv Detail & Related papers (2025-07-08T16:18:54Z) - A Survey on Autonomy-Induced Security Risks in Large Model-Based Agents [45.53643260046778]
Recent advances in large language models (LLMs) have catalyzed the rise of autonomous AI agents.<n>These large-model agents mark a paradigm shift from static inference systems to interactive, memory-augmented entities.
arXiv Detail & Related papers (2025-06-30T13:34:34Z) - SentinelAgent: Graph-based Anomaly Detection in Multi-Agent Systems [11.497269773189254]
We present a system-level anomaly detection framework tailored for large language model (LLM)-based multi-agent systems (MAS)<n>We propose a graph-based framework that models agent interactions as dynamic execution graphs, enabling semantic anomaly detection at node, edge, and path levels.<n>Second, we introduce a pluggable SentinelAgent, an LLM-powered oversight agent that observes, analyzes, and intervenes in MAS execution based on security policies and contextual reasoning.
arXiv Detail & Related papers (2025-05-30T04:25:19Z) - Automating Safety Enhancement for LLM-based Agents with Synthetic Risk Scenarios [77.86600052899156]
Large Language Model (LLM)-based agents are increasingly deployed in real-world applications.<n>We propose AutoSafe, the first framework that systematically enhances agent safety through fully automated synthetic data generation.<n>We show that AutoSafe boosts safety scores by 45% on average and achieves a 28.91% improvement on real-world tasks.
arXiv Detail & Related papers (2025-05-23T10:56:06Z) - AGENTFUZZER: Generic Black-Box Fuzzing for Indirect Prompt Injection against LLM Agents [54.29555239363013]
We propose a generic black-box fuzzing framework, AgentFuzzer, to automatically discover and exploit indirect prompt injection vulnerabilities.<n>We evaluate AgentFuzzer on two public benchmarks, AgentDojo and VWA-adv, where it achieves 71% and 70% success rates against agents based on o3-mini and GPT-4o.<n>We apply our attacks in real-world environments, successfully misleading agents to navigate to arbitrary URLs, including malicious sites.
arXiv Detail & Related papers (2025-05-09T07:40:17Z) - LlamaFirewall: An open source guardrail system for building secure AI agents [0.5603362829699733]
Large language models (LLMs) have evolved from simple chatbots into autonomous agents capable of performing complex tasks.<n>Given the higher stakes and the absence of deterministic solutions to mitigate these risks, there is a critical need for a real-time guardrail monitor.<n>We introduce LlamaFirewall, an open-source security focused guardrail framework.
arXiv Detail & Related papers (2025-05-06T14:34:21Z) - Progent: Programmable Privilege Control for LLM Agents [46.49787947705293]
We introduce Progent, the first privilege control mechanism for LLM agents.<n>At its core is a domain-specific language for flexibly expressing privilege control policies applied during agent execution.<n>This enables agent developers and users to craft suitable policies for their specific use cases and enforce them deterministically to guarantee security.
arXiv Detail & Related papers (2025-04-16T01:58:40Z) - DrunkAgent: Stealthy Memory Corruption in LLM-Powered Recommender Agents [28.294322726282896]
Large language model (LLM)-powered agents are increasingly used in recommender systems (RSs) to achieve personalized behavior modeling.<n>This paper presents the first systematic investigation of memory-based vulnerabilities in LLM-powered recommender agents.<n>We propose a novel black-box attack framework named DrunkAgent, which crafts semantically meaningful adversarial triggers.
arXiv Detail & Related papers (2025-03-31T07:35:40Z) - How Robust Are Router-LLMs? Analysis of the Fragility of LLM Routing Capabilities [62.474732677086855]
Large language model (LLM) routing has emerged as a crucial strategy for balancing computational costs with performance.<n>We propose the DSC benchmark: Diverse, Simple, and Categorized, an evaluation framework that categorizes router performance across a broad spectrum of query types.
arXiv Detail & Related papers (2025-03-20T19:52:30Z) - Guardians of the Agentic System: Preventing Many Shots Jailbreak with Agentic System [0.8136541584281987]
This work uses three examination methods to detect rogue agents through a Reverse Turing Test and analyze deceptive alignment through multi-agent simulations.<n>We develop an anti-jailbreaking system by testing it with GEMINI 1.5 pro and llama-3.3-70B, deepseek r1 models.<n>The detection capabilities are strong such as 94% accuracy for GEMINI 1.5 pro yet the system suffers persistent vulnerabilities when under long attacks.
arXiv Detail & Related papers (2025-02-23T23:35:15Z) - TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation [31.231916859341865]
TrustRAG is a framework that systematically filters malicious and irrelevant content before it is retrieved for generation.<n>TrustRAG delivers substantial improvements in retrieval accuracy, efficiency, and attack resistance.
arXiv Detail & Related papers (2025-01-01T15:57:34Z) - Dissecting Adversarial Robustness of Multimodal LM Agents [70.2077308846307]
We manually create 200 targeted adversarial tasks and evaluation scripts in a realistic threat model on top of VisualWebArena.<n>We find that we can successfully break latest agents that use black-box frontier LMs, including those that perform reflection and tree search.<n>We also use ARE to rigorously evaluate how the robustness changes as new components are added.
arXiv Detail & Related papers (2024-06-18T17:32:48Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
We present a Symbolic Reinforcement Learning (SRL) based architecture for safety control of Radio Access Network (RAN) applications.
We provide a purely automated procedure in which a user can specify high-level logical safety specifications for a given cellular network topology.
We introduce a user interface (UI) developed to help a user set intent specifications to the system, and inspect the difference in agent proposed actions.
arXiv Detail & Related papers (2021-06-03T16:45:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.