OSI Stack Redesign for Quantum Networks: Requirements, Technologies, Challenges, and Future Directions
- URL: http://arxiv.org/abs/2506.12195v1
- Date: Fri, 13 Jun 2025 19:48:18 GMT
- Title: OSI Stack Redesign for Quantum Networks: Requirements, Technologies, Challenges, and Future Directions
- Authors: Shakil Ahmed, Muhammad Kamran Saeed, Ashfaq Khokhar,
- Abstract summary: Quantum communication is poised to become a foundational element of next-generation networking.<n>The classical OSI model-designed for deterministic and error-tolerant systems-cannot support quantum-specific phenomena.<n>This paper proposes an architectural redesign of the OSI model for quantum networks in the context of 7G.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum communication is poised to become a foundational element of next-generation networking, offering transformative capabilities in security, entanglement-based connectivity, and computational offloading. However, the classical OSI model-designed for deterministic and error-tolerant systems-cannot support quantum-specific phenomena such as coherence fragility, probabilistic entanglement, and the no-cloning theorem. This paper provides a comprehensive survey and proposes an architectural redesign of the OSI model for quantum networks in the context of 7G. We introduce a Quantum-Converged OSI stack by extending the classical model with Layer 0 (Quantum Substrate) and Layer 8 (Cognitive Intent), supporting entanglement, teleportation, and semantic orchestration via LLMs and QML. Each layer is redefined to incorporate quantum mechanisms such as enhanced MAC protocols, fidelity-aware routing, and twin-based applications. This survey consolidates over 150 research works from IEEE, ACM, MDPI, arXiv, and Web of Science (2018-2025), classifying them by OSI layer, enabling technologies such as QKD, QEC, PQC, and RIS, and use cases such as satellite QKD, UAV swarms, and quantum IoT. A taxonomy of cross-layer enablers-such as hybrid quantum-classical control, metadata-driven orchestration, and blockchain-integrated quantum trust-is provided, along with simulation tools including NetSquid, QuNetSim, and QuISP. We present several domain-specific applications, including quantum healthcare telemetry, entangled vehicular networks, and satellite mesh overlays. An evaluation framework is proposed based on entropy throughput, coherence latency, and entanglement fidelity. Key future directions include programmable quantum stacks, digital twins, and AI-defined QNet agents, laying the groundwork for a scalable, intelligent, and quantum-compliant OSI framework for 7G and beyond.
Related papers
- Towards a Quantum-classical Augmented Network [0.0]
We propose a change in the structure of the HTTP protocol such that it can carry both quantum and classical payload.<n>We implement logistic regression, CNN, LSTM, and BiLSTM models to classify the privacy label for outgoing communications.
arXiv Detail & Related papers (2025-05-23T18:17:07Z) - Quantum-Aware Network Planning and Integration [0.0]
There is a need for having quantum signals coexist with classical traffic over the same physical medium.<n>Efforts are now underway to integrate QKD at the network level.
arXiv Detail & Related papers (2025-05-08T15:41:34Z) - SeQUeNCe GUI: An Extensible User Interface for Discrete Event Quantum Network Simulations [55.2480439325792]
SeQUeNCe is an open source simulator of quantum network communication.<n>We implement a graphical user interface which maintains the core principles of SeQUeNCe.
arXiv Detail & Related papers (2025-01-15T19:36:09Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Towards Quantum-Native Communication Systems: State-of-the-Art, Trends, and Challenges [27.282184604334603]
The survey examines technologies such as quantumdomain (QD) multi-input multi-output, QD non-orthogonal multiple access, quantum secure direct communication, QD resource allocation, QD routing, and QD artificial intelligence.<n>The current status of quantum sensing, quantum radar, and quantum timing is briefly reviewed in support of future applications.
arXiv Detail & Related papers (2023-11-09T09:45:52Z) - Reconfigurable Quantum Internet Service Provider [13.854695863568166]
We demonstrate the concept of quantum internet service provider (QISP)
We construct a reconfigurable QISP comprising both the quantum hardware and classical control software.
Our experiment demonstrates the robust capabilities of the QISP.
arXiv Detail & Related papers (2023-05-15T22:19:00Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - Design and Implementation of the Illinois Express Quantum Metropolitan
Area Network [0.4970703312134697]
The Illinois Express Quantum Network (IEQNET) is a program to realize metropolitan scale quantum networking over deployed optical fiber.
We describe the network architecture of IEQNET, including the Internet-inspired layered hierarchy that leverages software-defined networking (SDN) technology.
An important goal of IEQNET is to demonstrate the extent to which the control plane classical signals can co-propagate with the data plane quantum signals in the same fiber lines.
arXiv Detail & Related papers (2022-07-19T23:33:39Z) - NetQASM -- A low-level instruction set architecture for hybrid
quantum-classical programs in a quantum internet [0.1477771876929053]
NetQASM is a low-level instruction set architecture for quantum internet applications.
We implement NetQASM in a series of tools to write, parse, encode and run NetQASM code.
arXiv Detail & Related papers (2021-11-18T17:46:46Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - SeQUeNCe: A Customizable Discrete-Event Simulator of Quantum Networks [53.56179714852967]
This work develops SeQUeNCe, a comprehensive, customizable quantum network simulator.
We implement a comprehensive suite of network protocols and demonstrate the use of SeQUeNCe by simulating a photonic quantum network with nine routers equipped with quantum memories.
We are releasing SeQUeNCe as an open source tool and aim to generate community interest in extending it.
arXiv Detail & Related papers (2020-09-25T01:52:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.