Private Continuous-Time Synthetic Trajectory Generation via Mean-Field Langevin Dynamics
- URL: http://arxiv.org/abs/2506.12203v1
- Date: Fri, 13 Jun 2025 20:13:37 GMT
- Title: Private Continuous-Time Synthetic Trajectory Generation via Mean-Field Langevin Dynamics
- Authors: Anming Gu, Edward Chien, Kristjan Greenewald,
- Abstract summary: We leverage the connections between trajectory inference and continuous-time synthetic data generation.<n>We provide experiments that generate realistic trajectories on a synthesized variation of hand-drawn MNIST data.
- Score: 2.7255073299359154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We provide an algorithm to privately generate continuous-time data (e.g. marginals from stochastic differential equations), which has applications in highly sensitive domains involving time-series data such as healthcare. We leverage the connections between trajectory inference and continuous-time synthetic data generation, along with a computational method based on mean-field Langevin dynamics. As discretized mean-field Langevin dynamics and noisy particle gradient descent are equivalent, DP results for noisy SGD can be applied to our setting. We provide experiments that generate realistic trajectories on a synthesized variation of hand-drawn MNIST data while maintaining meaningful privacy guarantees. Crucially, our method has strong utility guarantees under the setting where each person contributes data for \emph{only one time point}, while prior methods require each person to contribute their \emph{entire temporal trajectory}--directly improving the privacy characteristics by construction.
Related papers
- Latent Noise Injection for Private and Statistically Aligned Synthetic Data Generation [7.240170769827935]
Synthetic data generation has become essential for scalable, privacy-preserving statistical analysis.<n>We propose a Latent Noise Injection method using Masked Autoregressive Flows (MAF)<n>Instead of directly sampling from the trained model, our method perturbs each data point in the latent space and maps it back to the data domain.
arXiv Detail & Related papers (2025-06-19T22:22:57Z) - Multivariate Long-term Time Series Forecasting with Fourier Neural Filter [55.09326865401653]
We introduce FNF as the backbone and DBD as architecture to provide excellent learning capabilities and optimal learning pathways for spatial-temporal modeling.<n>We show that FNF unifies local time-domain and global frequency-domain information processing within a single backbone that extends naturally to spatial modeling.
arXiv Detail & Related papers (2025-06-10T18:40:20Z) - Linear-Time User-Level DP-SCO via Robust Statistics [55.350093142673316]
User-level differentially private convex optimization (DP-SCO) has garnered significant attention due to the importance of safeguarding user privacy in machine learning applications.<n>Current methods, such as those based on differentially private gradient descent (DP-SGD), often struggle with high noise accumulation and suboptimal utility.<n>We introduce a novel linear-time algorithm that leverages robust statistics, specifically the median and trimmed mean, to overcome these challenges.
arXiv Detail & Related papers (2025-02-13T02:05:45Z) - Differentially Private Spatiotemporal Trajectory Synthesis with Retained Data Utility [0.3277163122167433]
DP-STTS is a differentially private synthesizer with high data utility.
Synthetic trajectories are generated from the noisy model.
Experiments one real-life dataset demonstrate that DP-STTS provides good data utility.
arXiv Detail & Related papers (2024-08-23T05:17:36Z) - Distributed Stochastic Gradient Descent with Staleness: A Stochastic Delay Differential Equation Based Framework [56.82432591933544]
Distributed gradient descent (SGD) has attracted considerable recent attention due to its potential for scaling computational resources, reducing training time, and helping protect user privacy in machine learning.<n>This paper presents the run time and staleness of distributed SGD based on delay differential equations (SDDEs) and the approximation of gradient arrivals.<n>It is interestingly shown that increasing the number of activated workers does not necessarily accelerate distributed SGD due to staleness.
arXiv Detail & Related papers (2024-06-17T02:56:55Z) - ST-DPGAN: A Privacy-preserving Framework for Spatiotemporal Data Generation [19.18074489351738]
We propose a Graph-based model for generating privacy-protected data.
Experiments conducted on three real-worldtemporal datasets validate the efficacy of our model.
The prediction model trained on our generated data maintains a competitive edge compared to the model trained on the original data.
arXiv Detail & Related papers (2024-06-04T04:43:54Z) - Temporal and Heterogeneous Graph Neural Network for Remaining Useful Life Prediction [27.521188262343596]
We introduce a novel model named Temporal and Heterogeneous Graph Neural Networks (THGNN)
THGNN aggregates historical data from neighboring nodes to accurately capture the temporal dynamics and spatial correlations within the stream of sensor data.
We have validated the effectiveness of our approach through comprehensive experiments.
arXiv Detail & Related papers (2024-05-07T14:08:57Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow)
MIOFlow learns, continuous population dynamics from static snapshot samples taken at sporadic timepoints.
We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
arXiv Detail & Related papers (2022-06-29T22:19:03Z) - Learning from time-dependent streaming data with online stochastic
algorithms [7.283533791778357]
This paper addresses optimization in a streaming setting with time-dependent and biased estimates.
We analyze several first-order methods, including Gradient Descent (SGD), mini-batch SGD, and time-varying mini-batch SGD, along with their Polyak-Ruppert averages.
arXiv Detail & Related papers (2022-05-25T07:53:51Z) - Conditional Sig-Wasserstein GANs for Time Series Generation [8.593063679921109]
Generative adversarial networks (GANs) have been extremely successful in generating samples, from seemingly high dimensional probability measures.
These methods struggle to capture the temporal dependence of joint probability distributions induced by time-series data.
Long time-series data streams hugely increase the dimension of the target space, which may render generative modelling infeasible.
We propose a generic conditional Sig-WGAN framework by integrating Wasserstein-GANs with mathematically principled and efficient path feature extraction.
arXiv Detail & Related papers (2020-06-09T17:38:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.