From Emergence to Control: Probing and Modulating Self-Reflection in Language Models
- URL: http://arxiv.org/abs/2506.12217v1
- Date: Fri, 13 Jun 2025 20:40:13 GMT
- Title: From Emergence to Control: Probing and Modulating Self-Reflection in Language Models
- Authors: Xudong Zhu, Jiachen Jiang, Mohammad Mahdi Khalili, Zhihui Zhu,
- Abstract summary: Self-reflection is a powerful behavior enabled by reinforcement learning with verifiable rewards.<n>We show that self-reflection is not exclusive to fine-tuned models.
- Score: 23.176641726866105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-reflection -- the ability of a large language model (LLM) to revisit, evaluate, and revise its own reasoning -- has recently emerged as a powerful behavior enabled by reinforcement learning with verifiable rewards (RLVR). While self-reflection correlates with improved reasoning accuracy, its origin and underlying mechanisms remain poorly understood. In this work, {\it we first show that self-reflection is not exclusive to RLVR fine-tuned models: it already emerges, albeit rarely, in pretrained models}. To probe this latent ability, we introduce Reflection-Inducing Probing, a method that injects reflection-triggering reasoning traces from fine-tuned models into pretrained models. This intervention raises self-reflection frequency of Qwen2.5 from 0.6\% to 18.6\%, revealing a hidden capacity for reflection. Moreover, our analysis of internal representations shows that both pretrained and fine-tuned models maintain hidden states that distinctly separate self-reflective from non-reflective contexts. Leveraging this observation, {\it we then construct a self-reflection vector, a direction in activation space associated with self-reflective reasoning}. By manipulating this vector, we enable bidirectional control over the self-reflective behavior for both pretrained and fine-tuned models. Experiments across multiple reasoning benchmarks show that enhancing these vectors improves reasoning performance by up to 12\%, while suppressing them reduces computational cost, providing a flexible mechanism to navigate the trade-off between reasoning quality and efficiency without requiring additional training. Our findings further our understanding of self-reflection and support a growing body of work showing that understanding model internals can enable precise behavioral control.
Related papers
- Efficient Reasoning Through Suppression of Self-Affirmation Reflections in Large Reasoning Models [29.615519143908998]
Self-affirmation reflections are redundant reflective steps that affirm prior content and often occur after the already correct reasoning steps.<n>We show that suppressing self-affirmation reflections reduces output length without degrading accuracy across multiple models.<n>We also improve current train-based method by explicitly suppressing such reflections.
arXiv Detail & Related papers (2025-06-14T05:30:09Z) - Can Large Reasoning Models Self-Train? [58.953117118687096]
Scaling the performance of large language models increasingly depends on methods that reduce reliance on human supervision.<n>We propose an online self-training reinforcement learning algorithm that leverages the model's self-consistency to infer correctness signals and train without any ground-truth supervision.
arXiv Detail & Related papers (2025-05-27T17:16:00Z) - Let LLMs Break Free from Overthinking via Self-Braking Tuning [60.08396797526657]
Large reasoning models (LRMs) have significantly enhanced their reasoning capabilities by generating longer chains of thought.<n>This performance gain comes at the cost of a substantial increase in redundant reasoning during the generation process.<n>We propose a novel framework, Self-Braking Tuning (SBT), which tackles overthinking from the perspective of allowing the model to regulate its own reasoning process.
arXiv Detail & Related papers (2025-05-20T16:53:40Z) - Thinking Out Loud: Do Reasoning Models Know When They're Right? [19.776645881640178]
Large reasoning models (LRMs) have recently demonstrated impressive capabilities in complex reasoning tasks.<n>We investigate how LRMs interact with other model behaviors by analyzing verbalized confidence.<n>We find that reasoning models may possess a diminished awareness of their own knowledge boundaries.
arXiv Detail & Related papers (2025-04-09T03:58:19Z) - SEAL: Steerable Reasoning Calibration of Large Language Models for Free [58.190800043449336]
Large Language Models (LLMs) have demonstrated compelling capabilities for complex reasoning tasks via the extended chain-of-thought (CoT) reasoning mechanism.<n>Recent studies reveal substantial redundancy in the CoT reasoning traces, which negatively impacts model performance.<n>We introduce SEAL, a training-free approach that seamlessly calibrates the CoT process, improving accuracy while demonstrating significant efficiency gains.
arXiv Detail & Related papers (2025-04-07T02:42:07Z) - CARIL: Confidence-Aware Regression in Imitation Learning for Autonomous Driving [0.0]
End-to-end vision-based imitation learning has demonstrated promising results in autonomous driving.<n>Traditional approaches rely on either regressionbased models, which provide precise control but lack confidence estimation, or classification-based models, which offer confidence scores but suffer from reduced precision due to discretization.<n>We introduce a dual-head neural network architecture that integrates both regression and classification heads to improve decision reliability in imitation learning.
arXiv Detail & Related papers (2025-03-02T08:19:02Z) - Self-rewarding correction for mathematical reasoning [19.480508580498103]
We study self-rewarding reasoning large language models (LLMs)<n>LLMs can simultaneously generate step-by-step reasoning and evaluate the correctness of their outputs during the inference time-without external feedback.<n>We propose a two-staged algorithmic framework for constructing self-rewarding reasoning models using only self-generated data.
arXiv Detail & Related papers (2025-02-26T23:01:16Z) - Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening.<n>Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training.<n>We analyze two natural families of self-improvement algorithms based on SFT and RLHF.
arXiv Detail & Related papers (2024-12-02T20:24:17Z) - Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision [120.40788744292739]
We propose a two-player paradigm that separates the roles of reasoning and critique models.
We first propose AutoMathCritique, an automated and scalable framework for collecting critique data.
We demonstrate that the critique models consistently improve the actor's performance on difficult queries at test-time.
arXiv Detail & Related papers (2024-11-25T17:11:54Z) - When Hindsight is Not 20/20: Testing Limits on Reflective Thinking in Large Language Models [15.781930031346105]
Self-reflection enhances performance in TruthfulQA, but adversely affects results in HotpotQA.
We find that self-reflection shows the most benefit when models are less likely to be correct initially, and when overall question difficulty is higher.
Based on our findings, we propose guidelines for decisions on when to implement self-reflection.
arXiv Detail & Related papers (2024-04-14T02:47:32Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.