Ontology Enabled Hybrid Modeling and Simulation
- URL: http://arxiv.org/abs/2506.12290v1
- Date: Sat, 14 Jun 2025 00:41:40 GMT
- Title: Ontology Enabled Hybrid Modeling and Simulation
- Authors: John Beverley, Andreas Tolk,
- Abstract summary: We show how complementary approaches address interoperability challenges along three axes: Human-Human, Human-Machine, and Machine-Machine.<n>Integrating with Web Technologies, we showcase their role as descriptive domain constructions and prescriptive guides for simulation.<n>Four application cases - sea-level design analysis, Industry 4.0 modeling, artificial societies for policy support, and cyber threat evaluation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore the role of ontologies in enhancing hybrid modeling and simulation through improved semantic rigor, model reusability, and interoperability across systems, disciplines, and tools. By distinguishing between methodological and referential ontologies, we demonstrate how these complementary approaches address interoperability challenges along three axes: Human-Human, Human-Machine, and Machine-Machine. Techniques such as competency questions, ontology design patterns, and layered strategies are highlighted for promoting shared understanding and formal precision. Integrating ontologies with Semantic Web Technologies, we showcase their dual role as descriptive domain representations and prescriptive guides for simulation construction. Four application cases - sea-level rise analysis, Industry 4.0 modeling, artificial societies for policy support, and cyber threat evaluation - illustrate the practical benefits of ontology-driven hybrid simulation workflows. We conclude by discussing challenges and opportunities in ontology-based hybrid M&S, including tool integration, semantic alignment, and support for explainable AI.
Related papers
- Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.<n>This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.<n>Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z) - Generative Multi-Agent Collaboration in Embodied AI: A Systematic Review [32.73711802351707]
Embodied multi-agent systems (EMAS) have attracted growing attention for their potential to address real-world challenges.<n>Recent advances in foundation models pave the way for generative agents capable of richer communication and adaptive problem-solving.<n>This survey provides a systematic examination of how EMAS can benefit from these generative capabilities.
arXiv Detail & Related papers (2025-02-17T07:39:34Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Onologies are widely used for representing domain knowledge and meta data.<n> logical reasoning that can directly support are quite limited in learning, approximation and prediction.<n>One straightforward solution is to integrate statistical analysis and machine learning.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - Towards Next-Generation Urban Decision Support Systems through AI-Powered Construction of Scientific Ontology using Large Language Models -- A Case in Optimizing Intermodal Freight Transportation [1.6230958216521798]
This study investigates the potential of leveraging the pre-trained Large Language Models (LLMs)
By adopting ChatGPT API as the reasoning core, we outline an integrated workflow that encompasses natural language processing, methontology-based prompt tuning, and transformers.
The outcomes of our methodology are knowledge graphs in widely adopted ontology languages (e.g., OWL, RDF, SPARQL)
arXiv Detail & Related papers (2024-05-29T16:40:31Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
We demonstrate its effectiveness for multi-agent trajectory prediction and social robot navigation.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
We introduce a novel neural systems model that integrates attractor dynamics with symbolic representations to model cognitive processes akin to the probabilistic language of thought (PLoT)
Our model segments the continuous representational space into discrete basins, with attractor states corresponding to symbolic sequences, that reflect the semanticity and compositionality characteristic of symbolic systems through unsupervised learning, rather than relying on pre-defined primitives.
This approach establishes a unified framework that integrates both symbolic and sub-symbolic processing through neural dynamics, a neuroplausible substrate with proven expressivity in AI, offering a more comprehensive model that mirrors the complex duality of cognitive operations
arXiv Detail & Related papers (2023-10-03T05:40:56Z) - AI-Assisted Discovery of Quantitative and Formal Models in Social
Science [6.39651637213537]
We show that our system can be used to discover interpretable models from real-world data in economics and sociology.
We propose that this AI-assisted framework can bridge parametric and non-parametric models commonly employed in social science research.
arXiv Detail & Related papers (2022-10-02T16:25:47Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Simulation Intelligence: Towards a New Generation of Scientific Methods [81.75565391122751]
"Nine Motifs of Simulation Intelligence" is a roadmap for the development and integration of the essential algorithms necessary for a merger of scientific computing, scientific simulation, and artificial intelligence.
We argue the motifs of simulation intelligence are interconnected and interdependent, much like the components within the layers of an operating system.
We believe coordinated efforts between motifs offers immense opportunity to accelerate scientific discovery.
arXiv Detail & Related papers (2021-12-06T18:45:31Z) - Semantic interoperability based on the European Materials and Modelling
Ontology and its ontological paradigm: Mereosemiotics [0.0]
European Materials and Modelling Ontology (EMMO) has recently been advanced in the computational molecular engineering and multi-scale modelling communities as a top-level.
This work explores how top-level that are based on the same paradigm - the same set of fundamental.
ontologys - as the EMMO can be applied to.
models of physical systems and their use in computational engineering practice.
arXiv Detail & Related papers (2020-03-22T13:19:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.