論文の概要: A Pluggable Multi-Task Learning Framework for Sentiment-Aware Financial Relation Extraction
- arxiv url: http://arxiv.org/abs/2506.12452v1
- Date: Sat, 14 Jun 2025 11:12:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:46.205836
- Title: A Pluggable Multi-Task Learning Framework for Sentiment-Aware Financial Relation Extraction
- Title(参考訳): 感性を考慮した財務関係抽出のためのプラガブルマルチタスク学習フレームワーク
- Authors: Jinming Luo, Hailin Wang,
- Abstract要約: 本稿では,金融 RE の強化を目的としたマルチタスク学習手法である Sentiment-Aware-SDP-Enhanced-Module (SSDP-SEM) を提案する。
具体的には、SSDP-SEMはREモデルとプラグ可能な補助的な感情知覚タスクを統合し、REモデルがテキストの感情と共に注意重みを同時にナビゲートすることを可能にする。
- 参考スコア(独自算出の注目度): 4.211128681972148
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Relation Extraction (RE) aims to extract semantic relationships in texts from given entity pairs, and has achieved significant improvements. However, in different domains, the RE task can be influenced by various factors. For example, in the financial domain, sentiment can affect RE results, yet this factor has been overlooked by modern RE models. To address this gap, this paper proposes a Sentiment-aware-SDP-Enhanced-Module (SSDP-SEM), a multi-task learning approach for enhancing financial RE. Specifically, SSDP-SEM integrates the RE models with a pluggable auxiliary sentiment perception (ASP) task, enabling the RE models to concurrently navigate their attention weights with the text's sentiment. We first generate detailed sentiment tokens through a sentiment model and insert these tokens into an instance. Then, the ASP task focuses on capturing nuanced sentiment information through predicting the sentiment token positions, combining both sentiment insights and the Shortest Dependency Path (SDP) of syntactic information. Moreover, this work employs a sentiment attention information bottleneck regularization method to regulate the reasoning process. Our experiment integrates this auxiliary task with several prevalent frameworks, and the results demonstrate that most previous models benefit from the auxiliary task, thereby achieving better results. These findings highlight the importance of effectively leveraging sentiment in the financial RE task.
- Abstract(参考訳): 関係抽出(RE)は、与えられたエンティティペアからテキスト中の意味的関係を抽出することを目的としており、大幅な改善が達成されている。
しかし、異なるドメインでは、REタスクは様々な要因に影響を受けます。
例えば、金融分野では、感情がREの結果に影響を与えることがあるが、この要因は現代のREモデルでは見過ごされている。
このギャップに対処するため,金融RE向上のためのマルチタスク学習手法である Sentiment-Aware-SDP-Enhanced-Module (SSDP-SEM) を提案する。
具体的には、SSDP-SEMはREモデルをプラグ可能な補助感情知覚(ASP)タスクと統合し、REモデルがテキストの感情と共に注意重みを同時にナビゲートすることを可能にする。
まず、感情モデルを通して詳細な感情トークンを生成し、これらのトークンをインスタンスに挿入します。
次に、ASPタスクは、感情トークンの位置を予測し、感情の洞察と構文情報の最も短い依存経路(SDP)を組み合わせることによって、ニュアンスされた感情情報を取得することに焦点を当てる。
さらに,本研究では,情緒的注意情報ボトルネック正規化手法を用いて推論プロセスの調整を行う。
実験では, この補助課題をいくつかの一般的なフレームワークと統合し, 従来のモデルでは補助課題の恩恵を受けており, より良い結果が得られることを示した。
これらの結果は、財務省の業務において、感情を効果的に活用することの重要性を浮き彫りにした。
関連論文リスト
- Relation Extraction with Fine-Tuned Large Language Models in Retrieval Augmented Generation Frameworks [0.0]
関係抽出(RE)は、構造化されていないデータを知識グラフ(KG)のような構造化形式に変換するために重要である
プレトレーニング言語モデル(PLM)を活用した最近の研究は、この分野で大きな成功を収めている。
本研究では、微調整LDMの性能と、Retrieval Augmented-based (RAG) REアプローチへの統合について検討する。
論文 参考訳(メタデータ) (2024-06-20T21:27:57Z) - VILLS -- Video-Image Learning to Learn Semantics for Person Re-Identification [51.89551385538251]
VILLS (Video-Image Learning to Learn Semantics) は画像やビデオから空間的特徴と時間的特徴を共同で学習する自己教師型手法である。
VILLSはまず、意味的一貫性と頑健な空間的特徴を適応的に抽出する局所意味抽出モジュールを設計する。
そして、VILLSは、一貫した特徴空間における画像とビデオのモダリティを表現するために、統合された特徴学習および適応モジュールを設計する。
論文 参考訳(メタデータ) (2023-11-27T19:30:30Z) - Automatically Generating Counterfactuals for Relation Exaction [18.740447044960796]
関係抽出(RE)は自然言語処理の基本課題である。
現在のディープニューラルモデルは高い精度を達成しているが、スプリアス相関の影響を受けやすい。
我々は、エンティティの文脈的反事実を導出するための新しいアプローチを開発する。
論文 参考訳(メタデータ) (2022-02-22T04:46:10Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - Learning from Context or Names? An Empirical Study on Neural Relation
Extraction [112.06614505580501]
テキストにおける2つの主要な情報ソースの効果について検討する:テキストコンテキストとエンティティ参照(名前)
本稿では,関係抽出のための実体型コントラスト事前学習フレームワーク(RE)を提案する。
我々のフレームワークは、異なるREシナリオにおけるニューラルモデルの有効性と堅牢性を改善することができる。
論文 参考訳(メタデータ) (2020-10-05T11:21:59Z) - Hierarchical Interaction Networks with Rethinking Mechanism for
Document-level Sentiment Analysis [37.20068256769269]
文書レベルの感性分析(DSA)は、あいまいなセマンティックリンクと感情情報の複雑化により、より困難である。
そこで本研究では,DSAにおける対象の明示的パターンと感情文脈を用いた識別表現を効果的に生成する方法について検討する。
感性に基づく再考機構(SR)を,感情ラベル情報を用いてHINを精製し,より感情に敏感な文書表現を学習することによって設計する。
論文 参考訳(メタデータ) (2020-07-16T16:27:38Z) - Probing Linguistic Features of Sentence-Level Representations in Neural
Relation Extraction [80.38130122127882]
ニューラルリレーション抽出(RE)に関連する言語特性を対象とした14の探索タスクを導入する。
私たちは、40以上の異なるエンコーダアーキテクチャと2つのデータセットでトレーニングされた言語的特徴の組み合わせによって学習された表現を研究するためにそれらを使用します。
アーキテクチャによって引き起こされるバイアスと言語的特徴の含意は、探索タスクのパフォーマンスにおいて明らかに表現されている。
論文 参考訳(メタデータ) (2020-04-17T09:17:40Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。