Semantic-Aware Visual Information Transmission With Key Information Extraction Over Wireless Networks
- URL: http://arxiv.org/abs/2506.12786v1
- Date: Sun, 15 Jun 2025 09:32:48 GMT
- Title: Semantic-Aware Visual Information Transmission With Key Information Extraction Over Wireless Networks
- Authors: Chen Zhu, Kang Liang, Jianrong Bao, Zhouxiang Zhao, Zhaohui Yang, Zhaoyang Zhang, Mohammad Shikh-Bahaei,
- Abstract summary: This paper proposes an AI-native deep joint source-channel coding (JSCC) framework tailored for resource-constrained 6G networks.<n>Our approach integrates key information extraction and adaptive background synthesis to enable intelligent, semantic-aware transmission.
- Score: 34.11565549404313
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of 6G networks demands unprecedented levels of intelligence, adaptability, and efficiency to address challenges such as ultra-high-speed data transmission, ultra-low latency, and massive connectivity in dynamic environments. Traditional wireless image transmission frameworks, reliant on static configurations and isolated source-channel coding, struggle to balance computational efficiency, robustness, and quality under fluctuating channel conditions. To bridge this gap, this paper proposes an AI-native deep joint source-channel coding (JSCC) framework tailored for resource-constrained 6G networks. Our approach integrates key information extraction and adaptive background synthesis to enable intelligent, semantic-aware transmission. Leveraging AI-driven tools, Mediapipe for human pose detection and Rembg for background removal, the model dynamically isolates foreground features and matches backgrounds from a pre-trained library, reducing data payloads while preserving visual fidelity. Experimental results demonstrate significant improvements in peak signal-to-noise ratio (PSNR) compared with traditional JSCC method, especially under low-SNR conditions. This approach offers a practical solution for multimedia services in resource-constrained mobile communications.
Related papers
- Distributionally Robust Wireless Semantic Communication with Large AI Models [120.29419104482793]
6G wireless systems are expected to support massive volumes of data with ultra-low latency.<n> conventional bit-level transmission strategies cannot support the efficiency and adaptability required by modern, data-intensive applications.<n>The concept of semantic communication (SemCom) addresses this limitation by focusing on transmitting task-relevant semantic information instead of raw data.
arXiv Detail & Related papers (2025-05-28T04:03:57Z) - A semantic communication-based workload-adjustable transceiver for wireless AI-generated content (AIGC) delivery [18.321324259528264]
We propose a Resource-aware wOrkload-adjUstable TransceivEr (ROUTE) for AIGC delivery in dynamic wireless networks.<n>Specifically, to relieve the communication resource bottleneck, SemCom is utilized to prioritize semantic information of the generated content.
arXiv Detail & Related papers (2025-03-24T16:49:06Z) - SING: Semantic Image Communications using Null-Space and INN-Guided Diffusion Models [52.40011613324083]
Joint source-channel coding systems (DeepJSCC) have recently demonstrated remarkable performance in wireless image transmission.<n>Existing methods focus on minimizing distortion between the transmitted image and the reconstructed version at the receiver, often overlooking perceptual quality.<n>We propose SING, a novel framework that formulates the recovery of high-quality images from corrupted reconstructions as an inverse problem.
arXiv Detail & Related papers (2025-03-16T12:32:11Z) - Semantic Communication based on Generative AI: A New Approach to Image Compression and Edge Optimization [1.450405446885067]
This thesis integrates semantic communication and generative models for optimized image compression and edge network resource allocation.<n>The communication infrastructure can benefit to significant improvements in bandwidth efficiency and latency reduction.<n>Results demonstrate the potential of combining generative AI and semantic communication to create more efficient semantic-goal-oriented communication networks.
arXiv Detail & Related papers (2025-02-01T21:48:31Z) - Communication-Efficient Federated Learning by Quantized Variance Reduction for Heterogeneous Wireless Edge Networks [55.467288506826755]
Federated learning (FL) has been recognized as a viable solution for local-privacy-aware collaborative model training in wireless edge networks.<n>Most existing communication-efficient FL algorithms fail to reduce the significant inter-device variance.<n>We propose a novel communication-efficient FL algorithm, named FedQVR, which relies on a sophisticated variance-reduced scheme.
arXiv Detail & Related papers (2025-01-20T04:26:21Z) - AoI in Context-Aware Hybrid Radio-Optical IoT Networks [8.467370216900107]
We study hybrid IoT networks that employ Optical Communication (OC) as a reinforcement medium to Radio Frequency (RF)<n>We adopt a multi-objective optimization strategy to balance the collection of the throughput with the minimization of energy and the frequency of switching between technologies.<n> Simulation results show that the OC supplementary integration alongside enhances the network's overall performances and significantly reduces the Mean AoI and Peak AoI.
arXiv Detail & Related papers (2024-12-17T13:48:25Z) - AI Flow at the Network Edge [58.31090055138711]
AI Flow is a framework that streamlines the inference process by jointly leveraging the heterogeneous resources available across devices, edge nodes, and cloud servers.<n>This article serves as a position paper for identifying the motivation, challenges, and principles of AI Flow.
arXiv Detail & Related papers (2024-11-19T12:51:17Z) - Latent Diffusion Model-Enabled Low-Latency Semantic Communication in the Presence of Semantic Ambiguities and Wireless Channel Noises [18.539501941328393]
This paper develops a latent diffusion model-enabled SemCom system to handle outliers in source data.<n>A lightweight single-layer latent space transformation adapter completes one-shot learning at the transmitter.<n>An end-to-end consistency distillation strategy is used to distill the diffusion models trained in latent space.
arXiv Detail & Related papers (2024-06-09T23:39:31Z) - Enabling robust sensor network design with data processing and
optimization making use of local beehive image and video files [0.0]
We of er a revolutionary paradigm that uses cutting-edge edge computing techniques to optimize data transmission and storage.
Our approach encompasses data compression for images and videos, coupled with a data aggregation technique for numerical data.
A key aspect of our approach is its ability to operate in resource-constrained environments.
arXiv Detail & Related papers (2024-02-26T15:27:47Z) - Semantic Communication Enabling Robust Edge Intelligence for
Time-Critical IoT Applications [87.05763097471487]
This paper aims to design robust Edge Intelligence using semantic communication for time-critical IoT applications.
We analyze the effect of image DCT coefficients on inference accuracy and propose the channel-agnostic effectiveness encoding for offloading.
arXiv Detail & Related papers (2022-11-24T20:13:17Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.