Lyapunov Learning at the Onset of Chaos
- URL: http://arxiv.org/abs/2506.12810v1
- Date: Sun, 15 Jun 2025 10:53:02 GMT
- Title: Lyapunov Learning at the Onset of Chaos
- Authors: Matteo Benati, Alessandro Londei, Denise Lanzieri, Vittorio Loreto,
- Abstract summary: We propose a novel training algorithm for neural networks called textitLyapunov Learning.<n>Our approach demonstrates effective and significant improvements in experiments involving regime shifts in non-stationary systems.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Handling regime shifts and non-stationary time series in deep learning systems presents a significant challenge. In the case of online learning, when new information is introduced, it can disrupt previously stored data and alter the model's overall paradigm, especially with non-stationary data sources. Therefore, it is crucial for neural systems to quickly adapt to new paradigms while preserving essential past knowledge relevant to the overall problem. In this paper, we propose a novel training algorithm for neural networks called \textit{Lyapunov Learning}. This approach leverages the properties of nonlinear chaotic dynamical systems to prepare the model for potential regime shifts. Drawing inspiration from Stuart Kauffman's Adjacent Possible theory, we leverage local unexplored regions of the solution space to enable flexible adaptation. The neural network is designed to operate at the edge of chaos, where the maximum Lyapunov exponent, indicative of a system's sensitivity to small perturbations, evolves around zero over time. Our approach demonstrates effective and significant improvements in experiments involving regime shifts in non-stationary systems. In particular, we train a neural network to deal with an abrupt change in Lorenz's chaotic system parameters. The neural network equipped with Lyapunov learning significantly outperforms the regular training, increasing the loss ratio by about $96\%$.
Related papers
- Leveraging chaos in the training of artificial neural networks [3.379574469735166]
We explore the dynamics of the neural network trajectory along training for unconventionally large learning rates.<n>We show that for a region of values of the learning rate, the GD optimization shifts away from purely exploitation-like algorithm into a regime of exploration-exploitation balance.
arXiv Detail & Related papers (2025-06-10T07:41:58Z) - Dreaming Learning [41.94295877935867]
Introducing new information to a machine learning system can interfere with previously stored data.<n>We propose a training algorithm inspired by Stuart Kauffman's notion of the Adjacent Possible.<n>It predisposes the neural network to smoothly accept and integrate data sequences with different statistical characteristics than expected.
arXiv Detail & Related papers (2024-10-23T09:17:31Z) - A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learning is a novel unified framework for learning with neural networks "over time"
It is based on differential equations that: (i) can be integrated without the need of external software solvers; (ii) generalize the well-established notion of gradient-based learning in feed-forward and recurrent networks; (iii) open to novel perspectives.
arXiv Detail & Related papers (2024-09-18T14:57:13Z) - Neuromimetic metaplasticity for adaptive continual learning [2.1749194587826026]
We propose a metaplasticity model inspired by human working memory to achieve catastrophic forgetting-free continual learning.
A key aspect of our approach involves implementing distinct types of synapses from stable to flexible, and randomly intermixing them to train synaptic connections with different degrees of flexibility.
The model achieved a balanced tradeoff between memory capacity and performance without requiring additional training or structural modifications.
arXiv Detail & Related papers (2024-07-09T12:21:35Z) - Dynamical stability and chaos in artificial neural network trajectories along training [3.379574469735166]
We study the dynamical properties of this process by analyzing through this lens the network trajectories of a shallow neural network.
We find hints of regular and chaotic behavior depending on the learning rate regime.
This work also contributes to the cross-fertilization of ideas between dynamical systems theory, network theory and machine learning.
arXiv Detail & Related papers (2024-04-08T17:33:11Z) - NeuralFastLAS: Fast Logic-Based Learning from Raw Data [54.938128496934695]
Symbolic rule learners generate interpretable solutions, however they require the input to be encoded symbolically.
Neuro-symbolic approaches overcome this issue by mapping raw data to latent symbolic concepts using a neural network.
We introduce NeuralFastLAS, a scalable and fast end-to-end approach that trains a neural network jointly with a symbolic learner.
arXiv Detail & Related papers (2023-10-08T12:33:42Z) - The least-control principle for learning at equilibrium [65.2998274413952]
We present a new principle for learning equilibrium recurrent neural networks, deep equilibrium models, or meta-learning.
Our results shed light on how the brain might learn and offer new ways of approaching a broad class of machine learning problems.
arXiv Detail & Related papers (2022-07-04T11:27:08Z) - Learning Fast and Slow for Online Time Series Forecasting [76.50127663309604]
Fast and Slow learning Networks (FSNet) is a holistic framework for online time-series forecasting.
FSNet balances fast adaptation to recent changes and retrieving similar old knowledge.
Our code will be made publicly available.
arXiv Detail & Related papers (2022-02-23T18:23:07Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
Small neural networks with a constrained number of trainable parameters, can be suitable resource-efficient candidates for many simple tasks.
We explore the diversity of the neurons within the hidden layer during the learning process.
We analyze how the diversity of the neurons affects predictions of the model.
arXiv Detail & Related papers (2021-09-20T15:12:16Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.