論文の概要: Accelerating PDE-Constrained Optimization by the Derivative of Neural Operators
- arxiv url: http://arxiv.org/abs/2506.13120v1
- Date: Mon, 16 Jun 2025 05:58:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:47.511041
- Title: Accelerating PDE-Constrained Optimization by the Derivative of Neural Operators
- Title(参考訳): ニューラル演算子の導出によるPDE制約最適化の高速化
- Authors: Ze Cheng, Zhuoyu Li, Xiaoqiang Wang, Jianing Huang, Zhizhou Zhang, Zhongkai Hao, Hang Su,
- Abstract要約: 勾配に基づくPDE制約最適化問題のための新しいフレームワークを提案する。
我々は,ニューラル演算子を専門的に訓練し,ニューラル演算子内での微分学習を強化する。
実験により,演算子とその導関数を正確に学習する上で,モデルの有効性が示された。
- 参考スコア(独自算出の注目度): 12.819245784606867
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: PDE-Constrained Optimization (PDECO) problems can be accelerated significantly by employing gradient-based methods with surrogate models like neural operators compared to traditional numerical solvers. However, this approach faces two key challenges: (1) **Data inefficiency**: Lack of efficient data sampling and effective training for neural operators, particularly for optimization purpose. (2) **Instability**: High risk of optimization derailment due to inaccurate neural operator predictions and gradients. To address these challenges, we propose a novel framework: (1) **Optimization-oriented training**: we leverage data from full steps of traditional optimization algorithms and employ a specialized training method for neural operators. (2) **Enhanced derivative learning**: We introduce a *Virtual-Fourier* layer to enhance derivative learning within the neural operator, a crucial aspect for gradient-based optimization. (3) **Hybrid optimization**: We implement a hybrid approach that integrates neural operators with numerical solvers, providing robust regularization for the optimization process. Our extensive experimental results demonstrate the effectiveness of our model in accurately learning operators and their derivatives. Furthermore, our hybrid optimization approach exhibits robust convergence.
- Abstract(参考訳): PDE-Constrained Optimization (PDECO)問題は、従来の数値解法と比較して、ニューラル演算子のような代理モデルを用いた勾配に基づく手法を用いることで、大幅に加速することができる。
**データ非効率**: 効率的なデータサンプリングの欠如と、ニューラル演算子、特に最適化目的のための効果的なトレーニング。
(2) **不安定**:不正確なニューラル演算子予測と勾配による脱線リスクが高い。
1)*最適化指向のトレーニング*:従来の最適化アルゴリズムの全ステップからのデータを活用し、ニューラル演算子のための特別なトレーニング手法を採用する。
2)**改良された微分学習**: 勾配に基づく最適化の重要な側面である神経演算子内での微分学習を強化するために,*Virtual-Fourier*層を導入する。
(3)*Hybrid Optimization**:我々は、ニューラルネットワークと数値解法を統合するハイブリッドアプローチを実装し、最適化プロセスに堅牢な正規化を提供する。
我々は,演算子とその導関数を正確に学習する上で,モデルの有効性を実証した。
さらに、我々のハイブリッド最適化アプローチは、堅牢な収束を示す。
関連論文リスト
- Training Neural ODEs Using Fully Discretized Simultaneous Optimization [2.290491821371513]
ニューラルネットワークの正規微分方程式(Neural ODEs)の学習には、各エポックにおける微分方程式の解法が必要であるため、計算コストが高い。
特に、コロケーションに基づく完全に離散化された定式化を採用し、大規模な非線形最適化にIPOPT-aソルバを用いる。
この結果から,(コロケーションをベースとした)同時ニューラルODE訓練パイプラインの可能性が示唆された。
論文 参考訳(メタデータ) (2025-02-21T18:10:26Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
機械学習(ML)モデルは、制約付き最適化ソルバをエミュレートするために訓練される。
本稿では,MLモデルを用いて2つの解推定を直接予測する手法を提案する。
これにより、双対目的が損失関数であるエンドツーエンドのトレーニングスキームと、双対上昇法をエミュレートした原始的実現可能性への解推定を可能にする。
論文 参考訳(メタデータ) (2024-03-06T04:43:22Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Physics Informed Piecewise Linear Neural Networks for Process
Optimization [0.0]
ニューラルネットワークモデルに埋め込まれた最適化問題に対して,物理情報を用いた線形ニューラルネットワークモデルの更新が提案されている。
すべてのケースにおいて、物理インフォームドトレーニングニューラルネットワークに基づく最適結果は、大域的最適性に近い。
論文 参考訳(メタデータ) (2023-02-02T10:14:54Z) - A Closer Look at Learned Optimization: Stability, Robustness, and
Inductive Biases [44.01339030872185]
ブラックボックスは、しばしば、メタトレーニングセットのタスクと異なり、安定性と一般化に苦しむ。
最適化アルゴリズムの帰納バイアスと安定性特性について検討し、結果として得られる知見をブラックボックスの帰納バイアスの設計に適用する。
私たちはさまざまなニューラルネットワークトレーニングタスクを学び、そこで学んだ技術の現状を上回ります。
論文 参考訳(メタデータ) (2022-09-22T17:47:21Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - BAMSProd: A Step towards Generalizing the Adaptive Optimization Methods
to Deep Binary Model [34.093978443640616]
最近のBNN(Binary Neural Networks)の性能は大幅に低下している。
BNNの効果的かつ効率的なトレーニングを保証することは未解決の問題である。
そこで本研究では,BAMSProdアルゴリズムを用いて,深部二元モデルの収束特性が量子化誤差と強く関連していることを示す。
論文 参考訳(メタデータ) (2020-09-29T06:12:32Z) - Enhanced data efficiency using deep neural networks and Gaussian
processes for aerodynamic design optimization [0.0]
随伴型最適化法は空気力学的形状設計において魅力的である。
複数の最適化問題が解決されている場合、それらは違法に高価になる可能性がある。
本稿では,高コストな随伴解法に取って代わる機械学習を実現するサロゲートベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-15T15:09:21Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - A Primer on Zeroth-Order Optimization in Signal Processing and Machine
Learning [95.85269649177336]
ZO最適化は、勾配推定、降下方向、ソリューション更新の3つの主要なステップを反復的に実行する。
我々は,ブラックボックス深層学習モデルによる説明文の評価や生成,効率的なオンラインセンサ管理など,ZO最適化の有望な応用を実証する。
論文 参考訳(メタデータ) (2020-06-11T06:50:35Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
自己指向型オンライン学習最適化は、ディープニューラルネットワーク(DNN)と有限要素法(FEM)計算を統合している。
本アルゴリズムは, コンプライアンスの最小化, 流体構造最適化, 伝熱促進, トラス最適化の4種類の問題によって検証された。
その結果, 直接使用法と比較して計算時間を2~5桁削減し, 実験で検証した全ての最先端アルゴリズムより優れていた。
論文 参考訳(メタデータ) (2020-02-04T20:00:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。