Seismic Acoustic Impedance Inversion Framework Based on Conditional Latent Generative Diffusion Model
- URL: http://arxiv.org/abs/2506.13529v1
- Date: Mon, 16 Jun 2025 14:19:40 GMT
- Title: Seismic Acoustic Impedance Inversion Framework Based on Conditional Latent Generative Diffusion Model
- Authors: Jie Chen, Hongling Chen, Jinghuai Gao, Chuangji Meng, Tao Yang, XinXin Liang,
- Abstract summary: We propose a novel seismic acoustic impedance inversion framework based on a conditional latent generative diffusion model.<n>We show that the proposed method achieves high inversion accuracy and strong generalization capability within only a few diffusion steps.
- Score: 17.677087517318988
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Seismic acoustic impedance plays a crucial role in lithological identification and subsurface structure interpretation. However, due to the inherently ill-posed nature of the inversion problem, directly estimating impedance from post-stack seismic data remains highly challenging. Recently, diffusion models have shown great potential in addressing such inverse problems due to their strong prior learning and generative capabilities. Nevertheless, most existing methods operate in the pixel domain and require multiple iterations, limiting their applicability to field data. To alleviate these limitations, we propose a novel seismic acoustic impedance inversion framework based on a conditional latent generative diffusion model, where the inversion process is made in latent space. To avoid introducing additional training overhead when embedding conditional inputs, we design a lightweight wavelet-based module into the framework to project seismic data and reuse an encoder trained on impedance to embed low-frequency impedance into the latent space. Furthermore, we propose a model-driven sampling strategy during the inversion process of this framework to enhance accuracy and reduce the number of required diffusion steps. Numerical experiments on a synthetic model demonstrate that the proposed method achieves high inversion accuracy and strong generalization capability within only a few diffusion steps. Moreover, application to field data reveals enhanced geological detail and higher consistency with well-log measurements, validating the effectiveness and practicality of the proposed approach.
Related papers
- Frequency Domain-Based Diffusion Model for Unpaired Image Dehazing [92.61216319417208]
We propose a novel frequency domain-based diffusion model, named ours, for fully exploiting the beneficial knowledge in unpaired clear data.<n>Inspired by the strong generative ability shown by Diffusion Models (DMs), we tackle the dehazing task from the perspective of frequency domain reconstruction.
arXiv Detail & Related papers (2025-07-02T01:22:46Z) - Diffusion prior as a direct regularization term for FWI [0.0]
We propose a score-based generative diffusion prior into Full Waveform Inversion (FWI)<n>Unlike traditional diffusion approaches, our method avoids the reverse diffusion sampling and needs fewer iterations.<n>The proposed method offers enhanced fidelity and robustness compared to conventional and GAN-based FWI approaches.
arXiv Detail & Related papers (2025-06-11T19:43:23Z) - Sub-DM:Subspace Diffusion Model with Orthogonal Decomposition for MRI Reconstruction [13.418240070456987]
Sub-DM is a subspace diffusion model that restricts the diffusion process via projections onto subspace as the k-space data distribution evolves toward noise.
It circumvents the inference challenges posed by the com-plex and high-dimensional characteristics of k-space data.
It allows the diffusion processes in different spaces to refine models through a mutual feedback mechanism, enabling the learning of ac-curate prior even when dealing with complex k-space data.
arXiv Detail & Related papers (2024-11-06T08:33:07Z) - Denoising as Adaptation: Noise-Space Domain Adaptation for Image Restoration [64.84134880709625]
We show that it is possible to perform domain adaptation via the noise space using diffusion models.<n>In particular, by leveraging the unique property of how auxiliary conditional inputs influence the multi-step denoising process, we derive a meaningful diffusion loss.<n>We present crucial strategies such as channel-shuffling layer and residual-swapping contrastive learning in the diffusion model.
arXiv Detail & Related papers (2024-06-26T17:40:30Z) - Digging into contrastive learning for robust depth estimation with diffusion models [55.62276027922499]
We propose a novel robust depth estimation method called D4RD.
It features a custom contrastive learning mode tailored for diffusion models to mitigate performance degradation in complex environments.
In experiments, D4RD surpasses existing state-of-the-art solutions on synthetic corruption datasets and real-world weather conditions.
arXiv Detail & Related papers (2024-04-15T14:29:47Z) - Stage-by-stage Wavelet Optimization Refinement Diffusion Model for
Sparse-View CT Reconstruction [14.037398189132468]
We present an innovative approach named the Stage-by-stage Wavelet Optimization Refinement Diffusion (SWORD) model for sparse-view CT reconstruction.
Specifically, we establish a unified mathematical model integrating low-frequency and high-frequency generative models, achieving the solution with optimization procedure.
Our method rooted in established optimization theory, comprising three distinct stages, including low-frequency generation, high-frequency refinement and domain transform.
arXiv Detail & Related papers (2023-08-30T10:48:53Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.<n>This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.<n>We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - Seismic Data Interpolation via Denoising Diffusion Implicit Models with Coherence-corrected Resampling [7.755439545030289]
Deep learning models such as U-Net often underperform when the training and test missing patterns do not match.
We propose a novel framework that is built upon the multi-modal diffusion models.
Inference phase, we introduce the denoising diffusion implicit model to reduce the number of sampling steps.
To enhance the coherence and continuity between the revealed traces and the missing traces, we propose two strategies.
arXiv Detail & Related papers (2023-07-09T16:37:47Z) - A prior regularized full waveform inversion using generative diffusion
models [0.5156484100374059]
Full waveform inversion (FWI) has the potential to provide high-resolution subsurface model estimations.
Due to limitations in observation, e.g., regional noise, limited shots or receivers, and band-limited data, it is hard to obtain the desired high-resolution model with FWI.
We propose a new paradigm for FWI regularized by generative diffusion models.
arXiv Detail & Related papers (2023-06-22T10:10:34Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly Detection [80.20339155618612]
DiffusionAD is a novel anomaly detection pipeline comprising a reconstruction sub-network and a segmentation sub-network.<n>A rapid one-step denoising paradigm achieves hundreds of times acceleration while preserving comparable reconstruction quality.<n>Considering the diversity in the manifestation of anomalies, we propose a norm-guided paradigm to integrate the benefits of multiple noise scales.
arXiv Detail & Related papers (2023-03-15T16:14:06Z) - Empowering Diffusion Models on the Embedding Space for Text Generation [38.664533078347304]
We study the optimization challenges encountered with both the embedding space and the denoising model.
Data distribution is learnable for embeddings, which may lead to the collapse of the embedding space and unstable training.
Based on the above analysis, we propose Difformer, an embedding diffusion model based on Transformer.
arXiv Detail & Related papers (2022-12-19T12:44:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.