Limited-Angle CBCT Reconstruction via Geometry-Integrated Cycle-domain Denoising Diffusion Probabilistic Models
- URL: http://arxiv.org/abs/2506.13545v1
- Date: Mon, 16 Jun 2025 14:32:16 GMT
- Title: Limited-Angle CBCT Reconstruction via Geometry-Integrated Cycle-domain Denoising Diffusion Probabilistic Models
- Authors: Yuan Gao, Shaoyan Pan, Mingzhe Hu, Huiqiao Xie, Jill Remick, Chih-Wei Chang, Justin Roper, Zhen Tian, Xiaofeng Yang,
- Abstract summary: Cone-beam CT (CBCT) is widely used in clinical radiotherapy for image-guided treatment.<n>However, slow gantry rotation limits performance by introducing motion artifacts, blurring, and increased dose.<n>This work aims to develop a clinically feasible method for reconstructing high-quality CBCT volumes from consecutive limited-angle acquisitions.
- Score: 7.703600088651634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cone-beam CT (CBCT) is widely used in clinical radiotherapy for image-guided treatment, improving setup accuracy, adaptive planning, and motion management. However, slow gantry rotation limits performance by introducing motion artifacts, blurring, and increased dose. This work aims to develop a clinically feasible method for reconstructing high-quality CBCT volumes from consecutive limited-angle acquisitions, addressing imaging challenges in time- or dose-constrained settings. We propose a limited-angle (LA) geometry-integrated cycle-domain (LA-GICD) framework for CBCT reconstruction, comprising two denoising diffusion probabilistic models (DDPMs) connected via analytic cone-beam forward and back projectors. A Projection-DDPM completes missing projections, followed by back-projection, and an Image-DDPM refines the volume. This dual-domain design leverages complementary priors from projection and image spaces to achieve high-quality reconstructions from limited-angle (<= 90 degrees) scans. Performance was evaluated against full-angle reconstruction. Four board-certified medical physicists conducted assessments. A total of 78 planning CTs in common CBCT geometries were used for training and evaluation. The method achieved a mean absolute error of 35.5 HU, SSIM of 0.84, and PSNR of 29.8 dB, with visibly reduced artifacts and improved soft-tissue clarity. LA-GICD's geometry-aware dual-domain learning, embedded in analytic forward/backward operators, enabled artifact-free, high-contrast reconstructions from a single 90-degree scan, reducing acquisition time and dose four-fold. LA-GICD improves limited-angle CBCT reconstruction with strong data fidelity and anatomical realism. It offers a practical solution for short-arc acquisitions, enhancing CBCT use in radiotherapy by providing clinically applicable images with reduced scan time and dose for more accurate, personalized treatments.
Related papers
- ARTInp: CBCT-to-CT Image Inpainting and Image Translation in Radiotherapy [1.70645147263353]
ARTInp is a novel deep-learning framework combining image inpainting and CBCT-to-CT translation.<n>We trained ARTInp on a dataset of paired CBCT and CT images from the SynthRad 2023 challenge.
arXiv Detail & Related papers (2025-02-07T13:04:25Z) - CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
Sparse-view computed tomography (SVCT) reconstruction aims to acquire CT images based on sparsely-sampled measurements.
Due to ill-posedness, implicit neural representation (INR) techniques may leave considerable holes'' (i.e., unmodeled spaces) in their fields, leading to sub-optimal results.
We propose the Coordinate-based Continuous Projection Field (CoCPF), which aims to build hole-free representation fields for SVCT reconstruction.
arXiv Detail & Related papers (2024-06-21T08:38:30Z) - Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial [8.393536317952085]
We propose a deep learning-based approach for PCCT image reconstruction at halved dose and doubled speed in a New Zealand clinical trial.
We present a patch-based volumetric refinement network to alleviate the GPU memory limitation, train network with synthetic data, and use model-based iterative refinement to bridge the gap between synthetic and real-world data.
arXiv Detail & Related papers (2024-03-19T00:07:48Z) - A gradient-based approach to fast and accurate head motion compensation in cone-beam CT [35.44857854720086]
This paper introduces a novel approach to CBCT motion estimation using a gradient-based optimization algorithm.
We drastically accelerate motion estimation yielding a 19-fold speed-up compared to existing methods.
It achieves a reduction in reprojection error from an initial average of 3mm to 0.61mm after motion compensation.
arXiv Detail & Related papers (2024-01-17T15:37:00Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Fast and accurate sparse-view CBCT reconstruction using meta-learned
neural attenuation field and hash-encoding regularization [13.01191568245715]
Cone beam computed tomography (CBCT) is an emerging medical imaging technique to visualize the internal anatomical structures of patients.
reducing the number of projections in a CBCT scan while preserving the quality of a reconstructed image is challenging.
We propose a fast and accurate sparse-view CBCT reconstruction (FACT) method to provide better reconstruction quality and faster optimization speed.
arXiv Detail & Related papers (2023-12-04T07:23:44Z) - Cross-domain Iterative Network for Simultaneous Denoising, Limited-angle
Reconstruction, and Attenuation Correction of Low-dose Cardiac SPECT [12.1851913514097]
Low-dose (LD) SPECT aims to minimize radiation exposure but leads to increased image noise. Limited-angle (LA) SPECT enables faster scanning and reduced hardware costs but results in lower reconstruction accuracy.
CT-derived attenuation maps ($mu$-maps) are commonly used for SPECT attenuation correction (AC) but it will cause extra radiation exposure and SPECT-CT misalignments.
We propose a Cross-domain Iterative Network (CDI-Net) for simultaneous denoising, LA reconstruction, and CT-free AC in cardiac SPECT.
arXiv Detail & Related papers (2023-05-17T16:06:30Z) - Cross-domain Denoising for Low-dose Multi-frame Spiral Computed Tomography [20.463308418655526]
X-ray exposure raises concerns about potential health risks such as cancer.
The desire for lower radiation doses has driven researchers to improve reconstruction quality.
This paper proposes a two-stage method for the commercially available multi-slice spiral CT scanners.
arXiv Detail & Related papers (2023-04-21T09:30:22Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging.
Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image.
This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses.
We introduce a novel geometry-aware encoder-decoder framework to solve this problem.
arXiv Detail & Related papers (2023-03-26T14:38:42Z) - SNAF: Sparse-view CBCT Reconstruction with Neural Attenuation Fields [71.84366290195487]
We propose SNAF for sparse-view CBCT reconstruction by learning the neural attenuation fields.
Our approach achieves superior performance in terms of high reconstruction quality (30+ PSNR) with only 20 input views.
arXiv Detail & Related papers (2022-11-30T14:51:14Z) - REGAS: REspiratory-GAted Synthesis of Views for Multi-Phase CBCT
Reconstruction from a single 3D CBCT Acquisition [75.64791080418162]
REGAS proposes a self-supervised method to synthesize the undersampled tomographic views and mitigate aliasing artifacts in reconstructed images.
To address the large memory cost of deep neural networks on high resolution 4D data, REGAS introduces a novel Ray Path Transformation (RPT) that allows for distributed, differentiable forward projections.
arXiv Detail & Related papers (2022-08-17T03:42:19Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - A Learning-based Method for Online Adjustment of C-arm Cone-Beam CT
Source Trajectories for Artifact Avoidance [47.345403652324514]
The reconstruction quality attainable with commercial CBCT devices is insufficient due to metal artifacts in the presence of pedicle screws.
We propose to adjust the C-arm CBCT source trajectory during the scan to optimize reconstruction quality with respect to a certain task.
We demonstrate that convolutional neural networks trained on realistically simulated data are capable of predicting quality metrics that enable scene-specific adjustments of the CBCT source trajectory.
arXiv Detail & Related papers (2020-08-14T09:23:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.