A Production Scheduling Framework for Reinforcement Learning Under Real-World Constraints
- URL: http://arxiv.org/abs/2506.13566v2
- Date: Tue, 17 Jun 2025 15:27:49 GMT
- Title: A Production Scheduling Framework for Reinforcement Learning Under Real-World Constraints
- Authors: Jonathan Hoss, Felix Schelling, Noah Klarmann,
- Abstract summary: Real-world production environments introduce additional complexities that cause traditional scheduling approaches to be less effective.<n>Reinforcement learning (RL) holds potential in addressing these challenges, as it allows agents to learn adaptive scheduling strategies.<n>We propose a modular framework that extends classical JSSP formulations by incorporating key real-world constraints.<n>JobShopLab is an open-source tool for both research and industrial applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The classical Job Shop Scheduling Problem (JSSP) focuses on optimizing makespan under deterministic constraints. Real-world production environments introduce additional complexities that cause traditional scheduling approaches to be less effective. Reinforcement learning (RL) holds potential in addressing these challenges, as it allows agents to learn adaptive scheduling strategies. However, there is a lack of a comprehensive, general-purpose frameworks for effectively training and evaluating RL agents under real-world constraints. To address this gap, we propose a modular framework that extends classical JSSP formulations by incorporating key real-world constraints inherent to the shopfloor, including transport logistics, buffer management, machine breakdowns, setup times, and stochastic processing conditions, while also supporting multi-objective optimization. The framework is a customizable solution that offers flexibility in defining problem instances and configuring simulation parameters, enabling adaptation to diverse production scenarios. A standardized interface ensures compatibility with various RL approaches, providing a robust environment for training RL agents and facilitating the standardized comparison of different scheduling methods under dynamic and uncertain conditions. We release JobShopLab as an open-source tool for both research and industrial applications, accessible at: https://github.com/proto-lab-ro/jobshoplab
Related papers
- Evaluating the Efficacy of LLM-Based Reasoning for Multiobjective HPC Job Scheduling [6.623504719591386]
Large Language Model (LLM)-based scheduler uses ReAct-style framework (Reason + Act)<n>System incorporates a scratchpad memory to track scheduling history and refine decisions via natural language feedback.<n>We evaluate our approach using OpenAI's O4-Mini and Anthropic's Claude 3.7 across seven real-world HPC workload scenarios.
arXiv Detail & Related papers (2025-05-29T14:25:29Z) - Learning Virtual Machine Scheduling in Cloud Computing through Language Agents [22.314607581353638]
In cloud services, virtual machine (VM) scheduling is a typical Online Dynamic Multidimensional Bin Packing (ODMBP) problem.<n>Traditional methods struggle to adapt to real-time changes, domain-expert-designed approaches suffer from rigid strategies.<n>This paper proposes a hierarchical language agent framework named MiCo, which provides a large language model (LLM)-driven design paradigm for solving ODMBP.
arXiv Detail & Related papers (2025-05-15T09:42:11Z) - Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
Reinforcement learning from human feedback has emerged as an effective technique to align Large Language models.<n>Controlled Decoding provides a mechanism for aligning a model at inference time without retraining.<n>We propose a mixture of agent-based decoding strategies leveraging the existing off-the-shelf aligned LLM policies.
arXiv Detail & Related papers (2025-03-27T17:34:25Z) - Learning-enabled Flexible Job-shop Scheduling for Scalable Smart
Manufacturing [11.509669981978874]
In smart manufacturing systems, flexible job-shop scheduling with transportation constraints is essential to optimize solutions for maximizing productivity.
Recent developments in deep reinforcement learning (DRL)-based methods for FJSPT have encountered a scale generalization challenge.
We introduce a novel graph-based DRL method, named the Heterogeneous Graph Scheduler (HGS)
arXiv Detail & Related papers (2024-02-14T06:49:23Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
offline reinforcement learning (RL) paradigm provides recipe to convert static behavior datasets into policies that can perform better than the policy that collected the data.
In this paper, we propose an adaptive scheme for action quantization.
We show that several state-of-the-art offline RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks when combined with our proposed discretization scheme.
arXiv Detail & Related papers (2023-10-18T06:07:10Z) - Flexible Job Shop Scheduling via Dual Attention Network Based
Reinforcement Learning [73.19312285906891]
In flexible job shop scheduling problem (FJSP), operations can be processed on multiple machines, leading to intricate relationships between operations and machines.
Recent works have employed deep reinforcement learning (DRL) to learn priority dispatching rules (PDRs) for solving FJSP.
This paper presents a novel end-to-end learning framework that weds the merits of self-attention models for deep feature extraction and DRL for scalable decision-making.
arXiv Detail & Related papers (2023-05-09T01:35:48Z) - A Memetic Algorithm with Reinforcement Learning for Sociotechnical
Production Scheduling [0.0]
This article presents a memetic algorithm with applying deep reinforcement learning (DRL) to flexible job shop scheduling problems (DRC-FJSSP)
From research projects in industry, we recognize the need to consider flexible machines, flexible human workers, worker capabilities, setup and processing operations, material arrival times, complex job paths with parallel tasks for bill of material manufacturing, sequence-dependent setup times and (partially) automated tasks in human-machine-collaboration.
arXiv Detail & Related papers (2022-12-21T11:24:32Z) - Towards Deployment-Efficient Reinforcement Learning: Lower Bound and
Optimality [141.89413461337324]
Deployment efficiency is an important criterion for many real-world applications of reinforcement learning (RL)
We propose a theoretical formulation for deployment-efficient RL (DE-RL) from an "optimization with constraints" perspective.
arXiv Detail & Related papers (2022-02-14T01:31:46Z) - Hybrid intelligence for dynamic job-shop scheduling with deep
reinforcement learning and attention mechanism [28.28095225164155]
We formulate the DJSP as a Markov decision process (MDP) to be tackled by reinforcement learning (RL)
We propose a flexible hybrid framework that takes disjunctive graphs as states and a set of general dispatching rules as the action space with minimum prior domain knowledge.
We present Gymjsp, a public benchmark based on the well-known OR-Library, to provide a standardized off-the-shelf facility for RL and DJSP research communities.
arXiv Detail & Related papers (2022-01-03T09:38:13Z) - Scenic4RL: Programmatic Modeling and Generation of Reinforcement
Learning Environments [89.04823188871906]
Generation of diverse realistic scenarios is challenging for real-time strategy (RTS) environments.
Most of the existing simulators rely on randomly generating the environments.
We introduce the benefits of adopting an existing formal scenario specification language, SCENIC, to assist researchers.
arXiv Detail & Related papers (2021-06-18T21:49:46Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
We introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained policy optimization (CPPO)
We show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
arXiv Detail & Related papers (2020-02-22T10:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.