XGraphRAG: Interactive Visual Analysis for Graph-based Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2506.13782v1
- Date: Tue, 10 Jun 2025 09:14:30 GMT
- Title: XGraphRAG: Interactive Visual Analysis for Graph-based Retrieval-Augmented Generation
- Authors: Ke Wang, Bo Pan, Yingchaojie Feng, Yuwei Wu, Jieyi Chen, Minfeng Zhu, Wei Chen,
- Abstract summary: This research proposes a visual analysis framework that helps RAG developers identify critical recalls of GraphRAG.<n>We develop XGraphRAG, a prototype system incorporating a set of interactive visualizations to facilitate users' analysis process.
- Score: 16.068460356582648
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph-based Retrieval-Augmented Generation (RAG) has shown great capability in enhancing Large Language Model (LLM)'s answer with an external knowledge base. Compared to traditional RAG, it introduces a graph as an intermediate representation to capture better structured relational knowledge in the corpus, elevating the precision and comprehensiveness of generation results. However, developers usually face challenges in analyzing the effectiveness of GraphRAG on their dataset due to GraphRAG's complex information processing pipeline and the overwhelming amount of LLM invocations involved during graph construction and query, which limits GraphRAG interpretability and accessibility. This research proposes a visual analysis framework that helps RAG developers identify critical recalls of GraphRAG and trace these recalls through the GraphRAG pipeline. Based on this framework, we develop XGraphRAG, a prototype system incorporating a set of interactive visualizations to facilitate users' analysis process, boosting failure cases collection and improvement opportunities identification. Our evaluation demonstrates the effectiveness and usability of our approach. Our work is open-sourced and available at https://github.com/Gk0Wk/XGraphRAG.
Related papers
- Graph-R1: Towards Agentic GraphRAG Framework via End-to-end Reinforcement Learning [20.05893083101089]
Graph-R1 is an agentic GraphRAG framework via end-to-end reinforcement learning (RL)<n>It introduces lightweight knowledge hypergraph construction, models retrieval as a multi-turn agent-environment interaction.<n>Experiments on standard RAG datasets show that Graph-R1 outperforms traditional GraphRAG and RL-enhanced RAG methods in reasoning accuracy, retrieval efficiency, and generation quality.
arXiv Detail & Related papers (2025-07-29T15:01:26Z) - GLANCE: Graph Logic Attention Network with Cluster Enhancement for Heterophilous Graph Representation Learning [54.60090631330295]
Graph Neural Networks (GNNs) have demonstrated significant success in learning from graph-structured data but often struggle on heterophilous graphs.<n>We propose GLANCE, a novel framework that integrates logic-guided reasoning, dynamic graph refinement, and adaptive clustering to enhance graph representation learning.
arXiv Detail & Related papers (2025-07-24T15:45:26Z) - When to use Graphs in RAG: A Comprehensive Analysis for Graph Retrieval-Augmented Generation [25.508719115522645]
Graph retrieval-augmented generation (GraphRAG) has emerged as a powerful paradigm for enhancing large language models (LLMs) with external knowledge.<n>Recent studies report that GraphRAG frequently underperforms vanilla RAG on many real-world tasks.<n>This raises a critical question: Is GraphRAG really effective, and in which scenarios do graph structures provide measurable benefits for RAG systems?
arXiv Detail & Related papers (2025-06-06T02:37:47Z) - Align-GRAG: Reasoning-Guided Dual Alignment for Graph Retrieval-Augmented Generation [75.9865035064794]
Large language models (LLMs) have demonstrated remarkable capabilities, but still struggle with issues like hallucinations and outdated information.<n>Retrieval-augmented generation (RAG) addresses these issues by grounding LLM outputs in external knowledge with an Information Retrieval (IR) system.<n>We propose Align-GRAG, a novel reasoning-guided dual alignment framework in post-retrieval phrase.
arXiv Detail & Related papers (2025-05-22T05:15:27Z) - NodeRAG: Structuring Graph-based RAG with Heterogeneous Nodes [25.173078967881803]
Retrieval-augmented generation (RAG) empowers large language models to access external and private corpus.<n>Current graph-based RAG approaches seldom prioritize the design of graph structures.<n>Inadequately designed graph not only impede the seamless integration of diverse graph algorithms but also result in workflow inconsistencies.<n>We propose NodeRAG, a graph-centric framework introducing heterogeneous graph structures.
arXiv Detail & Related papers (2025-04-15T18:24:00Z) - RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs [58.10503898336799]
We introduce the RAG-on-Graphs Library (RGL), a modular framework that seamlessly integrates the complete RAG pipeline.<n>RGL addresses key challenges by supporting a variety of graph formats and integrating optimized implementations for essential components.<n>Our evaluations demonstrate that RGL not only accelerates the prototyping process but also enhances the performance and applicability of graph-based RAG systems.
arXiv Detail & Related papers (2025-03-25T03:21:48Z) - RAG vs. GraphRAG: A Systematic Evaluation and Key Insights [42.31801859160484]
We systematically evaluate Retrieval-Augmented Generation (RAG) and GraphRAG on text-based benchmarks.<n>Our results highlight the distinct strengths of RAG and GraphRAG across different tasks and evaluation perspectives.
arXiv Detail & Related papers (2025-02-17T02:36:30Z) - Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)<n>This framework provides a standardized setting to evaluate GNNs across diverse datasets.<n>We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - Retrieval-Augmented Generation with Graphs (GraphRAG) [84.29507404866257]
Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information.<n>Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information.<n>Unlike conventional RAG, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains.
arXiv Detail & Related papers (2024-12-31T06:59:35Z) - LEGO-GraphRAG: Modularizing Graph-based Retrieval-Augmented Generation for Design Space Exploration [17.514586423233872]
We propose LEGO-GraphRAG, a modular framework that enables fine-grained decomposition of the GraphRAG workflow.<n>Our framework facilitates comprehensive empirical studies of GraphRAG on large-scale real-world graphs and diverse query sets.
arXiv Detail & Related papers (2024-11-06T15:32:28Z) - GraphEdit: Large Language Models for Graph Structure Learning [14.16155596597421]
Graph Structure Learning (GSL) focuses on capturing intrinsic dependencies and interactions among nodes in graph-structured data.<n>Existing GSL methods heavily depend on explicit graph structural information as supervision signals.<n>We propose GraphEdit, an approach that leverages large language models (LLMs) to learn complex node relationships in graph-structured data.
arXiv Detail & Related papers (2024-02-23T08:29:42Z) - Graph Learning based Recommender Systems: A Review [111.43249652335555]
Graph Learning based Recommender Systems (GLRS) employ advanced graph learning approaches to model users' preferences and intentions as well as items' characteristics for recommendations.
We provide a systematic review of GLRS, by discussing how they extract important knowledge from graph-based representations to improve the accuracy, reliability and explainability of the recommendations.
arXiv Detail & Related papers (2021-05-13T14:50:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.