Deep Learning Meets Teleconnections: Improving S2S Predictions for European Winter Weather
- URL: http://arxiv.org/abs/2504.07625v1
- Date: Thu, 10 Apr 2025 10:23:07 GMT
- Title: Deep Learning Meets Teleconnections: Improving S2S Predictions for European Winter Weather
- Authors: Philine L. Bommer, Marlene Kretschmer, Fiona R. Spuler, Kirill Bykov, Marina M. -C. Höhne,
- Abstract summary: Predictions on subseasonal-to-seasonal timescales range from two weeks to two month.<n>Teleconnections, such as the stratospheric polar vortex (SPV) and Madden-Julian Oscillation (MJO) offer windows of enhanced predictability.<n>We developed and evaluated deep learning architectures to predict North Atlantic-European weather regimes.
- Score: 2.3440344026824125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predictions on subseasonal-to-seasonal (S2S) timescales--ranging from two weeks to two month--are crucial for early warning systems but remain challenging owing to chaos in the climate system. Teleconnections, such as the stratospheric polar vortex (SPV) and Madden-Julian Oscillation (MJO), offer windows of enhanced predictability, however, their complex interactions remain underutilized in operational forecasting. Here, we developed and evaluated deep learning architectures to predict North Atlantic-European (NAE) weather regimes, systematically assessing the role of remote drivers in improving S2S forecast skill of deep learning models. We implemented (1) a Long Short-term Memory (LSTM) network predicting the NAE regimes of the next six weeks based on previous regimes, (2) an Index-LSTM incorporating SPV and MJO indices, and (3) a ViT-LSTM using a Vision Transformer to directly encode stratospheric wind and tropical outgoing longwave radiation fields. These models are compared with operational hindcasts as well as other AI models. Our results show that leveraging teleconnection information enhances skill at longer lead times. Notably, the ViT-LSTM outperforms ECMWF's subseasonal hindcasts beyond week 4 by improving Scandinavian Blocking (SB) and Atlantic Ridge (AR) predictions. Analysis of high-confidence predictions reveals that NAO-, SB, and AR opportunity forecasts can be associated with SPV variability and MJO phase patterns aligning with established pathways, also indicating new patterns. Overall, our work demonstrates that encoding physically meaningful climate fields can enhance S2S prediction skill, advancing AI-driven subseasonal forecast. Moreover, the experiments highlight the potential of deep learning methods as investigative tools, providing new insights into atmospheric dynamics and predictability.
Related papers
- DiffScale: Continuous Downscaling and Bias Correction of Subseasonal Wind Speed Forecasts using Diffusion Models [0.27104259437944106]
Subseasonal to seasonal (S2S) forecasts can offer significant socioeconomic advantages to the energy sector.<n>We propose DiffScale, a diffusion model that super-resolves spatial information for continuous downscaling factors and lead times.<n>We achieve a significant improvement in prediction quality, outperforming baselines up to week 3.
arXiv Detail & Related papers (2025-03-31T09:44:28Z) - Maximizing the Impact of Deep Learning on Subseasonal-to-Seasonal Climate Forecasting: The Essential Role of Optimization [17.574436380991266]
Weather and climate forecasting is vital for sectors such as agriculture and disaster management.
Forecasting at the subseasonal-to-seasonal (S2S) scale, spanning 2 to 6 weeks, remains challenging.
This paper identifies that optimization, instead of network structure, could be the root cause of this performance gap.
arXiv Detail & Related papers (2024-11-23T08:01:54Z) - FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - Machine learning models for daily rainfall forecasting in Northern Tropical Africa using tropical wave predictors [0.0]
Numerical weather prediction (NWP) models often underperform compared to simpler climatology-based precipitation forecasts in northern tropical Africa.
This study uses two machine-learning models--gamma regression and a convolutional neural network (CNN)--trained on tropical waves (TWs) to predict daily rainfall during the July-September monsoon season.
arXiv Detail & Related papers (2024-08-29T08:36:22Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
We present an AI-based data assimilation model, i.e., Adas, for global weather variables.
We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term.
We are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential.
arXiv Detail & Related papers (2023-12-18T09:05:28Z) - ResoNet: Robust and Explainable ENSO Forecasts with Hybrid Convolution
and Transformer Networks [47.60320586459432]
Deep learning models can skillfully predict the El Nino-Southern Oscillation (ENSO) forecasts over 1.5 years ahead.
We propose ResoNet, a DL model that combines convolutional neural network (CNN) and Transformer architectures.
We show that ResoNet can robustly predict ESNO at lead times between 19 and 26 months, thus outperforming existing approaches in terms of the forecast horizon.
arXiv Detail & Related papers (2023-12-16T12:12:31Z) - FuXi-S2S: A machine learning model that outperforms conventional global subseasonal forecast models [13.852128658186876]
FuXi Subseasonal-to-Seasonal (FuXi-S2S) is a machine learning model that provides global daily mean forecasts up to 42 days.
FuXi-S2S, trained on 72 years of daily statistics from ECMWF ERA5 reanalysis data, outperforms the ECMWF's state-of-the-art Subseasonal-to-Seasonal model.
arXiv Detail & Related papers (2023-12-15T16:31:44Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.