A Quantum Annealing Approach for Solving Optimal Feature Selection and Next Release Problems
- URL: http://arxiv.org/abs/2506.14129v2
- Date: Sat, 28 Jun 2025 09:28:37 GMT
- Title: A Quantum Annealing Approach for Solving Optimal Feature Selection and Next Release Problems
- Authors: Shuchang Wang, Xiaopeng Qiu, Yingxing Xue, Yanfu Li, Wei Yang,
- Abstract summary: We introduce quantum annealing as a subroutine to tackle multi-objective search-based software engineering problems.<n>For small-scale problems, we reformulate multi-objective optimization (MOO) as single-objective optimization (SOO) using penalty-based mappings for quantum processing.<n>For large-scale problems, we employ a decomposition strategy guided by maximum energy impact (MEI) with a steepest descent method to enhance local search efficiency.
- Score: 6.600113809039099
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Search-based software engineering (SBSE) addresses critical optimization challenges in software engineering, including the next release problem (NRP) and feature selection problem (FSP). While traditional heuristic approaches and integer linear programming (ILP) methods have demonstrated efficacy for small to medium-scale problems, their scalability to large-scale instances remains unknown. Here, we introduce quantum annealing (QA) as a subroutine to tackling multi-objective SBSE problems, leveraging the computational potential of quantum systems. We propose two QA-based algorithms tailored to different problem scales. For small-scale problems, we reformulate multi-objective optimization (MOO) as single-objective optimization (SOO) using penalty-based mappings for quantum processing. For large-scale problems, we employ a decomposition strategy guided by maximum energy impact (MEI), integrating QA with a steepest descent method to enhance local search efficiency. Applied to NRP and FSP, our approaches are benchmarked against the heuristic NSGA-II and the ILP-based $\epsilon$-constraint method. Experimental results reveal that while our methods produce fewer non-dominated solutions than $\epsilon$-constraint, they achieve significant reductions in execution time. Moreover, compared to NSGA-II, our methods deliver more non-dominated solutions with superior computational efficiency. These findings underscore the potential of QA in advancing scalable and efficient solutions for SBSE challenges.
Related papers
- SCOOP: A Quantum-Computing Framework for Constrained Combinatorial Optimization [0.0]
We present SCOOP, a novel framework for solving constrained optimization problems.<n>SCOOP transforms a constrained problem into an unconstrained counterpart, forming SCOOP problem twins.<n>We demonstrate the framework on three NP-hard problems, Minimum Dominating Set, Minimum Maximal Matching, and Minimum Set Cover.
arXiv Detail & Related papers (2025-04-15T06:17:23Z) - A Comparative Study of Quantum Optimization Techniques for Solving Combinatorial Optimization Benchmark Problems [4.266376725904727]
We introduce a comprehensive benchmarking framework designed to evaluate quantum optimization techniques against well-established NP-hard problems.<n>Our framework focuses on key problem classes, including the Multi-Dimensional Knapsack Problem (MDKP), Maximum Independent Set (MIS), Quadratic Assignment Problem (QAP), and Market Share Problem (MSP)
arXiv Detail & Related papers (2025-03-15T13:02:22Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Multi-Objective Optimization and Network Routing with Near-Term Quantum
Computers [0.2150989251218736]
We develop a scheme with which near-term quantum computers can be applied to solve multi-objective optimization problems.
We focus on an implementation based on the quantum approximate optimization algorithm (QAOA)
arXiv Detail & Related papers (2023-08-16T09:22:01Z) - Quantum-Assisted Solution Paths for the Capacitated Vehicle Routing
Problem [0.0]
We discuss the Capacitated Vehicle Problem (CVRP) or its reduced variant, the Travelling Salesperson Problem (TSP)
Even with today's most powerful classical algorithms, the CVRP is challenging to solve classically.
Quantum computing may offer a way to improve the time to solution.
arXiv Detail & Related papers (2023-04-19T13:03:50Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Multiobjective variational quantum optimization for constrained
problems: an application to Cash Management [45.82374977939355]
We introduce a new method for solving optimization problems with challenging constraints using variational quantum algorithms.
We test our proposal on a real-world problem with great relevance in finance: the Cash Management problem.
Our empirical results show a significant improvement in terms of the cost of the achieved solutions, but especially in the avoidance of local minima.
arXiv Detail & Related papers (2023-02-08T17:09:20Z) - A Study of Scalarisation Techniques for Multi-Objective QUBO Solving [0.0]
Quantum and quantum-inspired optimisation algorithms have shown promising performance when applied to academic benchmarks as well as real-world problems.
However, QUBO solvers are single objective solvers. To make them more efficient at solving problems with multiple objectives, a decision on how to convert such multi-objective problems to single-objective problems need to be made.
arXiv Detail & Related papers (2022-10-20T14:54:37Z) - Constrained Optimization via Quantum Zeno Dynamics [23.391640416533455]
We introduce a technique that uses quantum Zeno dynamics to solve optimization problems with multiple arbitrary constraints, including inequalities.
We show that the dynamics of quantum optimization can be efficiently restricted to the in-constraint subspace on a fault-tolerant quantum computer.
arXiv Detail & Related papers (2022-09-29T18:00:40Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - ARES: An Efficient Algorithm with Recurrent Evaluation and Sampling-Driven Inference for Maximum Independent Set [48.57120672468062]
This paper introduces an efficient algorithm for the Maximum Independent Set (MIS) problem, incorporating two innovative techniques.<n>The proposed algorithm outperforms state-of-the-art algorithms in terms of solution quality, computational efficiency, and stability.
arXiv Detail & Related papers (2022-08-16T14:39:38Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.