Interpreting Biomedical VLMs on High-Imbalance Out-of-Distributions: An Insight into BiomedCLIP on Radiology
- URL: http://arxiv.org/abs/2506.14136v1
- Date: Tue, 17 Jun 2025 02:59:42 GMT
- Title: Interpreting Biomedical VLMs on High-Imbalance Out-of-Distributions: An Insight into BiomedCLIP on Radiology
- Authors: Nafiz Sadman, Farhana Zulkernine, Benjamin Kwan,
- Abstract summary: We analyse the limitations of BiomedCLIP when applied to a highly imbalanced, out-of-distribution medical dataset.<n>We show that the model under zero-shot settings over-predicts all labels, leading to poor precision and inter-class separability.<n>We highlight the need for careful adaptations of the models to foster reliability and applicability in a real-world setting.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we construct two research objectives: i) explore the learned embedding space of BiomedCLIP, an open-source large vision language model, to analyse meaningful class separations, and ii) quantify the limitations of BiomedCLIP when applied to a highly imbalanced, out-of-distribution multi-label medical dataset. We experiment on IU-xray dataset, which exhibits the aforementioned criteria, and evaluate BiomedCLIP in classifying images (radiographs) in three contexts: zero-shot inference, full finetuning, and linear probing. The results show that the model under zero-shot settings over-predicts all labels, leading to poor precision and inter-class separability. Full fine-tuning improves classification of distinct diseases, while linear probing detects overlapping features. We demonstrate visual understanding of the model using Grad-CAM heatmaps and compare with 15 annotations by a radiologist. We highlight the need for careful adaptations of the models to foster reliability and applicability in a real-world setting. The code for the experiments in this work is available and maintained on GitHub.
Related papers
- Comparison of ConvNeXt and Vision-Language Models for Breast Density Assessment in Screening Mammography [39.58317527488534]
This study compares multimodal and CNN-based methods for automated classification using the BI-RADS system.<n>Zero-shot classification achieved modest performance, while the fine-tuned ConvNeXt model outperformed the BioMedCLIP linear probe.<n>These findings suggest that despite the promise of multimodal learning, CNN-based models with end-to-end fine-tuning provide stronger performance for specialized medical imaging.
arXiv Detail & Related papers (2025-06-16T20:14:37Z) - In-Context Learning for Label-Efficient Cancer Image Classification in Oncology [1.741659712094955]
In-context learning (ICL) is a pragmatic alternative to model retraining for domain-specific diagnostic tasks.<n>We evaluated the performance of four vision-language models (VLMs)-Paligemma, CLIP, ALIGN and GPT-4o.<n>ICL demonstrated competitive gains despite their smaller size, suggesting feasibility for deployment in computing constrained clinical environments.
arXiv Detail & Related papers (2025-05-08T20:49:01Z) - Leveraging Vision-Language Embeddings for Zero-Shot Learning in Histopathology Images [7.048241543461529]
We propose a novel framework called Multi-Resolution Prompt-guided Hybrid Embedding (MR-PHE) to address these challenges in zero-shot histopathology image classification.<n>We introduce a hybrid embedding strategy that integrates global image embeddings with weighted patch embeddings.<n>A similarity-based patch weighting mechanism assigns attention-like weights to patches based on their relevance to class embeddings.
arXiv Detail & Related papers (2025-03-13T12:18:37Z) - Visual Prompt Engineering for Vision Language Models in Radiology [0.17183214167143138]
Contrastive Language-Image Pretraining (CLIPP) offers a solution by enabling zero-shot classification through large-scale pretraining.<n>Visual markers improve AUROC2013$ by up to 0.185, highlighting their effectiveness enhancing classification performance.<n>We release our code and preprocessing pipeline, providing a reference point for future work on localized classification in medical imaging.
arXiv Detail & Related papers (2024-08-28T13:53:27Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.