Comparison of ConvNeXt and Vision-Language Models for Breast Density Assessment in Screening Mammography
- URL: http://arxiv.org/abs/2506.13964v1
- Date: Mon, 16 Jun 2025 20:14:37 GMT
- Title: Comparison of ConvNeXt and Vision-Language Models for Breast Density Assessment in Screening Mammography
- Authors: Yusdivia Molina-Román, David Gómez-Ortiz, Ernestina Menasalvas-Ruiz, José Gerardo Tamez-Peña, Alejandro Santos-Díaz,
- Abstract summary: This study compares multimodal and CNN-based methods for automated classification using the BI-RADS system.<n>Zero-shot classification achieved modest performance, while the fine-tuned ConvNeXt model outperformed the BioMedCLIP linear probe.<n>These findings suggest that despite the promise of multimodal learning, CNN-based models with end-to-end fine-tuning provide stronger performance for specialized medical imaging.
- Score: 39.58317527488534
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Mammographic breast density classification is essential for cancer risk assessment but remains challenging due to subjective interpretation and inter-observer variability. This study compares multimodal and CNN-based methods for automated classification using the BI-RADS system, evaluating BioMedCLIP and ConvNeXt across three learning scenarios: zero-shot classification, linear probing with textual descriptions, and fine-tuning with numerical labels. Results show that zero-shot classification achieved modest performance, while the fine-tuned ConvNeXt model outperformed the BioMedCLIP linear probe. Although linear probing demonstrated potential with pretrained embeddings, it was less effective than full fine-tuning. These findings suggest that despite the promise of multimodal learning, CNN-based models with end-to-end fine-tuning provide stronger performance for specialized medical imaging. The study underscores the need for more detailed textual representations and domain-specific adaptations in future radiology applications.
Related papers
- Interpreting Biomedical VLMs on High-Imbalance Out-of-Distributions: An Insight into BiomedCLIP on Radiology [0.0]
We analyse the limitations of BiomedCLIP when applied to a highly imbalanced, out-of-distribution medical dataset.<n>We show that the model under zero-shot settings over-predicts all labels, leading to poor precision and inter-class separability.<n>We highlight the need for careful adaptations of the models to foster reliability and applicability in a real-world setting.
arXiv Detail & Related papers (2025-06-17T02:59:42Z) - Towards Accurate and Interpretable Neuroblastoma Diagnosis via Contrastive Multi-scale Pathological Image Analysis [16.268045905735818]
We propose CMSwinKAN, a contrastive-learning-based multi-scale feature fusion model tailored for pathological image classification.<n>By fusing multi-scale features and leveraging contrastive learning strategies, CMSwinKAN mimics clinicians' comprehensive approach.<n>Results demonstrate that CMSwinKAN performs better than existing state-of-the-art pathology-specific models pre-trained on large datasets.
arXiv Detail & Related papers (2025-04-18T15:39:46Z) - Interpretable Retinal Disease Prediction Using Biology-Informed Heterogeneous Graph Representations [40.8160960729546]
Interpretability is crucial to enhance trust in machine learning models for medical diagnostics.<n>This work proposes a method that surpasses the performance of established machine learning models.
arXiv Detail & Related papers (2025-02-23T19:27:47Z) - An analysis of data variation and bias in image-based dermatological datasets for machine learning classification [2.039829968340841]
In clinical dermatology, classification models can detect malignant lesions on patients' skin using only RGB images as input.<n>Most learning-based methods employ data acquired from dermoscopic datasets on training, which are large and validated by a gold standard.<n>This work aims to evaluate the gap between dermoscopic and clinical samples and understand how the dataset variations impact training.
arXiv Detail & Related papers (2025-01-15T17:18:46Z) - Graph-Ensemble Learning Model for Multi-label Skin Lesion Classification
using Dermoscopy and Clinical Images [7.159532626507458]
This study introduces a Graph Convolution Network (GCN) to exploit prior co-occurrence between each category as a correlation matrix into the deep learning model for the multi-label classification.
We propose a Graph-Ensemble Learning Model (GELN) that views the prediction from GCN as complementary information of the predictions from the fusion model.
arXiv Detail & Related papers (2023-07-04T13:19:57Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
We propose a new fine-tuning strategy that includes positive-pair loss relaxation and random sentence sampling.
Our approach consistently improves overall zero-shot pathology classification across four chest X-ray datasets and three pre-trained models.
arXiv Detail & Related papers (2022-12-14T06:04:18Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
In Computer-Aided Diagnosis (CAD), traditional classification models mostly use a single network to extract features.
This paper proposes a deep ensemble model based on image-level labels for the binary classification of benign and malignant lesions.
Result: In the ensemble network model with accuracy as the weight, the image-level binary classification achieves an accuracy of $98.90%$.
arXiv Detail & Related papers (2022-04-18T13:31:53Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.